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SKOLIAD nro. 104

Robert Bilinski

Please send your solutions to the problems in this edition by March
1, 2008. A copy of MATHEMATICAL MAYHEM Vol. 6 will be presented to
one pre-university reader who sends in solutions before the deadline. The
decision of the editor is final.

—_— N r——

Le concours de ce mois-ci proviennent du 23™¢ Concours W.]. Blundon
de Mathématiques. Je remercie Don Rideout de I'Université Mémorial de
Terre-Neuve qui a eu I’amabilité de me fournir les questions.

23 Concours W.]. Blundon de Mathématiques
parrainé par la Société Mathématique du Canada et
le département de mathématique et de statistique de
I’Université Mémorial de Terre-Neuve
22 Février 2006

1.si log, * = log, y, montrer que chacun d’eux égale log,, zy.

2. De combien de maniéres peut-on changer un billet de 20$% en 25 sous et
10 sous, si on utilise au moins un de chaque sou ?

3. Si une femme quitte lors d’une féte, alors 20% des gens restant sont des
femmes. Si, a la place, une femme se joint 4 la féte, alors 25% des gens restant
sont des femmes. Combien d’hommes se trouvent a la féte ?

4 Trouver deux facteurs de 248 — 1 qui se trouvent entre 60 et 70.

5. Les changements annuels de population dans une ville dans quatre années
consécutives sont respectivement 25% de plus, 25% de plus, 25% de moins et
25% de moins. Trouvez le pourcentage de changement net sur les quatre ans
au pourcent le plus prés.

6. Sixz+y =>5etxy =1, trouver =3 + y3.

7. Le point (4, 1) est sur la droite passant par (4, 1) et perpendiculaire a la
droite y = 2x + 1. Trouvez l'aire du triangle formé par la droite y = 2x + 1,
sa perpendiculaire et I'axe des x.

8. un point est choisi au hasard 2 l'intérieur d’un triangle équilatéral. A
partir de ce point, on trace les trois perpendiculaires aux c6tés. Montrez que
la somme de ces trois segments est de méme longueur qu'une hauteur du
triangle.
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9. Trouver tous les triplets d’entiers positifs (x, y, ) satifaisant aux équations

2’4+y—2z =100 et z+y?*—2 = 124.

10. combien de racines a I'équation sinz = To5 % ?

23 W.]. Blundon Mathematics Contest
Sponsored by the Canadian Mathematical Society and
IThe Department of Mathematics and Statistics
Memorial University of Newfoundland
February 22, 2006

1. 1f log, * = log, y, show that each is also equal to log,, zy.

2. In how many ways can 20 dollars be changed into dimes and quarters,
with at least one of each coin used?

3. if one of the women at a party leaves, then 20% of the people remaining
at the party are women. If, instead, another woman arrives at the party,
then 25% of the people at the party are women. How many men are at the
party?

4. Find two factors of 248 — 1 between 60 and 70.

5. The yearly changes in the population census of a town for four consecutive
years are, respectively, 25% increase, 25% increase, 25% decrease, and 25%
decrease. Find the net percent change to the nearest percent over the four
years.

6.1fx+y=>5and zy = 1, find 3 + y3.

7. The point (4, 1) is on the line that passes through the point (4,1) and is
perpendicular to the line y = 2x + 1. Find the area of the triangle formed
by the line y = 2z + 1, the given perpendicular line, and the z-axis.

8. An arbitrary point is selected inside an equilateral triangle. From this
point perpendiculars are dropped to each side of the triangle. Show that
the sum of the lengths of these perpendiculars is equal to the length of the
altitude of the triangle.

9. Find all positive integer triples (x, y, z) satisfying the equations

x>4+y—2z =100 and zxz+y?—2z = 124.

10. How many roots are there to the equation sinx = ﬁ x?
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Next we give the solutions to the Concours Montmorency 2004-2005
run by Collége Montmorency [2007 : 3-5].

1. The golden ratio N = % ~ 1.618033989... has the remarkable
property that its multiplicative inverse 1/NN is equal to its decimal part
0.618033989 . ... Find another number with this property.

Two interesting solutions were presented with a nice generalization. We first
present the solution by Daniel Tsai, student, Taipei American School, Taipei,
Taiwan.
A non-zero real number x has Y
this remarkable property if and only if
x — || = 1/x. Thus, the set X of all
such non-zero real numbers is the set
of z-coordinates of the points of inter- (1,1)
section of the graphs of y = = — |x]
and y = 1/z, as illustrated. A s )
Clearly, no such non-zero real o 1 2 T
numbers are negative. Furthermore,
all the positive solutions are given by (-1,-1)
2 (k + VK2 + 4) for positive integers
k, as can be seen by solving for the in-
tersection of the graphs of y = = — k&
and y = 1/z.

Next we feature the solution by Justin Yang, student, Lord Bing Secondary
School, Vancouver, BC.

Let N be a number having the remarkable property in the problem.
Hence, N — |[N| = 1/N. When |N| = n, we have N — n = 1/N. Using
the quadratic formula, we get

n4+vn24+4
5 .

N =

If n = 1, we get the given solution N = %5, the golden ratio. If n = 2,
we get N = 1 + /2, a new solution, as required.

Also solved by JONATHAN LOVE, student, Queen Elizabeth Jr.-Sr. High School, Calgary,
AB; and VEDULA N. MURTY, Dover, PA, USA. There was one incorrect solution submitted.

2. Consider a quarter circle of radius 1.

(a) Find a rectangle having the same area and the same
perimeter as the quarter circle.

(b) For a complete circle of radius 1, is it possible to find
such a rectangle, having an area and a perimeter equal
to that of the circle? Justify your answer.
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Solution to part (a) by Natalia Desy, student, Palembang, Indonesia.

™

Let the rectangle have sides of length = and y. Then the areaisxy = §
and the perimeter is 2z + 2y = 2 + 7. Substituting y = m/(4x) into the
second equation, we get 42 — (4 + )z + m = 0. Using the quadratic

formula, we get = = M. We may assign either value to z; the

8
other value will be y. Thus, our rectangle has sides 1 and 7.
Solution to part (b) by Vedula N. Murty, Dover, PA, USA.

It is not possible to find such a rectangle. If the rectangle has to have
the same perimeter and area as a circle with radius 1, we have z + y = =«
and zy = «. Since (z + y)? > 4xy for all real numbers = and y, we then
have 72 > 4m, implying that @ > 4, which is false. Therefore, no such real
numbers x and y exist.

Also solved by JONATHAN LOVE, student, Queen Elizabeth Jr.-Sr. High School, Calgary,
AB; MARIYA SARDARLI, student, McKernan Elementary and Junior High School, Edmonton,

AB; and JUSTIN YANG, student, Lord Bing Secondary School, Vancouver, BC. Desy and Murty
solved both parts (a) and (b).

3. A barrel is filled with water. We empty half of its contents and then add a
litre of water. After doing this operation seven consecutive times, we are left
with three litres of water in the barrel. How many litres were in the barrel
at the beginning?

Solution by Natalia Desy, student, Palembang, Indonesia.

Let x be the volume of the barrel, in litres. If we empty half, we are left
with %az, and adding a litre gives %az + 1. After repeating these operations
7 times, the barrel contains 2 x + 12T liters of water. Setting this equal to
3 and solving, we get x = 130. Hence, the initial amount of water in the
barrel is 130 litres.

Also solved by JONATHAN LOVE, student, Queen Elizabeth Jr.—Sr. High School, Calgary,
AB; and MARIYA SARDARLI, student, McKernan Elementary and Junior High School,
Edmonton, AB.

Q

4. The areas of three faces of a rectangular paral- ==
lelepiped are 18 cm?, 40 cm? and 80 cm?. Find: 247
(a) its volume; (b) the length of its diagonal PQ. .=

P
Solution by Justin Yang, student, Lord Bing Secondary School, Vancouver,
BC.

(a) Assume the rectangular parallelepiped has side lengths a, b, and ¢
(0 < a < b < c¢). Hence, we have ab = 18, bc = 80, and ac = 40.
Multiplying the three equations, we obtain a?b?c? = 57600. The volume is
abc = /57600 = 240 cm3.

(b) We have a = abe/(bc) = 240/80 = 3; similarly, we get b = 6 and
c = 40/3. Hence, PQ = /32 + 62 + (40/3)2 = £+/2005.
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Also solved by NATALIA DESY, student, Palembang, Indonesia; JONATHAN LOVE,
student, Queen Elizabeth Jr.—Sr. High School, Calgary, AB; VEDULA N. MURTY, Dover,
PA, USA; and MARIYA SARDARLI, student, McKernan Elementary and Junior High School,
Edmonton, AB.

5. Evaluate \/6 + /6 4+ 46+ ---.

Identical solutions by Natalia Desy, student, Palembang, Indonesia; Justin
Yang, student, Lord Bing Secondary School, Vancouver, BC; and Vedula N.
Murty, Dover, PA, USA.

Letm:\/6+\/6+\/6+~-. Then
z? = 6+\/6+\/6+\/m =6+,

or x? —x — 6 = 0. Factoring, we get (xz — 3)(x + 2) = 0, which implies that
x = 3 or x = —2. But z is the result of a positive square root; thus, z = 3.

Also solved by MARIYA SARDARLI, student, McKernan Elementary and Junior High
School, Edmonton, AB.

6. Let A, B, C, and D be collinear points such
that AB = BC = CD = 1. Consider three
semi-circles of respective diameters AC, BD and
AD. Let E be the intersection of the semi-circles
with centres B and C. Determine the area of the
curvilinear triangle AED (shaded in the drawing).

A B c D

Solution by Justin Yang, student, Lord Bing Secondary School, Vancouver,
BC.

Let [V] denote the area of region V, and let XY denote the semi-circle
with diameter XY . From the problem statement, we deduce that the large
semi-circle has diameter 3 (and radius %) and that ABEC is equilateral.
With this additional information, we can evaluate the required area using
the Inclusion-Exclusion Principle:

[curvilinear triangle AE D]

= [AD] — [AC] — [BD] + [curvilinear triangle BEC]
= 1(2m) — 27 — im + [curvilinear triangle BEC]
1

= g + [curvilinear triangle BEC]

im + [sector CBE] + [sector BCE] — [ABEC]

1 1 1 1 _ o111
sT T T — V3 = 5T — V3.

Also solved by NATALIA DESY, student, Palembang, Indonesia; JONATHAN LOVE,
student, Queen Elizabeth Jr.—Sr. High School, Calgary, AB; and MARIYA SARDARLI, student,
McKernan Elementary and Junior High School, Edmonton, AB.



326

7. The oscillation period of a pendulum is pro-
portional to the square root of its length (for ex-
ample, to triple the oscillation period, we multi-
ply the length by nine). Two pendulums of differ-
ent lengths are released from the initial position
shown. The shorter one measures 25 cm, and its
oscillation period is 1 second. The two pendulums
are aligned again for the first time after 7 seconds
in their initial position. Find the length of the
longer pendulum. (Air resistance is neglected.)

Identical solutions by Natalia Desy, student, Palembang, Indonesia; and
Justin Yang, student, Lord Bing Secondary School, Vancouver, BC.

From the shorter pendulum, we have T = k+/L or 1 = k+/25, which
gives us k = 1/5. For the longer pendulum, we get T = kv/L or 7 = £/,
which gives us L = 352 = 1225 cm.

Also solved by MARIYA SARDARLI, student, McKernan Elementary and Junior High
School, Edmonton, AB. There was one incorrect solution submitted.

8. In a refinery, a cylindrical storage tank has a spiral staircase one meter
wide attached to its exterior. The staircase goes from the bottom to the top
while making exactly 2 complete revolutions. If the tank has a height of 10
m and a diameter of 8 m, find the length of the exterior edge of the staircase.

Solution by Justin Yang, student, Lord Bing Secondary School, Vancouver,
BC.

10 m 10 m

2 x (circumference of circle with radius 4 + 1 = 5 m)

The length of the exterior edge of the staircase can be thought of as the
hypotenuse of a right-angled triangle obtained by “unrolling” the staircase
from around the tank. One leg of the triangle is the height of the tank
(H = 10 m); the other is twice the circumference of a circle with diameter
D = 8+ 2 = 10 m. (We take twice the circumference to take into account
the two complete revolutions the ramp makes around the tank.)

Ramp length = /H? 4 (2rD)2 = /100 + 40072 = 104/1 + 472 .

Also solved by JONATHAN LOVE, student, Queen Elizabeth Jr.-Sr. High School, Calgary,
AB; and MARIYA SARDARLI, student, McKernan Elementary and Junior High School,
Edmonton, AB.

—_—— N r—— S ———

That brings us to the end of another issue. This month’s winner of
a past volume of Mathematical Mayhem is Justin Yang. Congratulations,
Justin! Continue sending in your contests and solutions.
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.

The Mayhem Editor is Jeff Hooper (Acadia University). The Assistant
Mayhem Editor is Ian VanderBurgh (University of Waterloo). The other staff
members are John Grant McLoughlin (University of New Brunswick), Monika
Khbeis (Ascension of Our Lord Secondary School, Mississauga), Eric Robert
(Leo Hayes High School, Fredericton), Larry Rice (University of Waterloo),
and Ron Lancaster (University of Toronto).

—_— N r————

Mayhem Problems

Veuillez nous transmettre vos solutions aux problémes du présent numéro
avant le premier février 2008. Les solutions recues apreés cette date ne seront prises
en compte que s’il nous reste du temps avant la publication des solutions.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais.

La rédaction souhaite remercier Jean-Marc Terrier et Martin Goldstein, de
I’Université de Montréal, d’avoir traduit les problémes.

_— T rm———~S ——
M307. Proposé par Neven Juri¢, Zagreb, Croatie.

Deux carrés magiques 4 X 4 ont la propriété que la somme de chacune
de leurs lignes, de chacune de leurs colonnes et de leurs deux diagonales
donne le méme nombre IN. On considére alors, pour chaque carré, la somme
des éléments de ses quatre coins. Ces sommes peuvent-elles étre différentes
ou doivent-elles étre égales? (En d’autre termes, la somme des éléments
des quatre coins dépend-elle du carré lui-méme ou de la somme magique
N ?) Déterminer cette somme si elle est constante, ou alors montrer que ces
sommes peuvent différer.

M308. Proposé par Babis Stergiou, Chalkida, Gréce.

Soit ABC un triangle rectangle avec A = 90°, et soit M le point milieu
du c6té AB. Si D estle pied de la perpendiculaire de A sur CM et N le point
milieu de DC, montrer que BD L AN.

M309. Proposé par Mihaly Bencze, Brasov, Roumanie.

Déternimer tous les entiers non négatifs possibles x, y, z et t de sorte
que 3% + 3Y + 3% + 3! soit un cube parfait.
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M310. Proposé par J. Walter Lynch, Athens, GA, E-U.

Quatre rectangles congruents sont disposés
pour former un carré de telle sorte qu'ils en-
tourent un carré plus petit.

Soit S I'aire du carré extérieur et Q celle du
carré intérieur. Si l'aire du carré extérieur est 9
fois celle du carré intérieur, déterminer le rapport
des cotés des rectangles.

M311. Proposé par Mihaly Bencze, Brasov, Roumanie.

Soit a, b et c trois nombres réels positifs, et soit m € (0, i) Montrer
qu’une au moins des équations suivantes posséde des solutions réelles :

ar’+br+em = 0,
br? +cx+am = 0,
ct’+ar+bm = 0.

M312. Proposé par G.P. Henderson, Garden Hill, Campbellcroft, ON.

Jean est en négotiation avec son banquier sur les termes d'une hy-
pothéque. Ils sont tombés d’accord sur le montant L de celle-ci ainsi que
sur un taux annuel d’intérét de 3.

Jean propose «Je veux faire des paiements de P dollars a la fin de
chaque année pour les prochaines n années. C’est plus qui n’en faut pour
payer les intéréts. L'excédent servira a réduire le principal pour I’année sui-
vante. A la fin des n années, je contracterai une nouvelle hypothéque pour
le principal restant.»

Le banquier répond «Je préférerais des paiements plus fréquents. Je
suggere des paiements de P/4 chaque trimestre avec un intérét de 7/4 ap-
pliqué sur le solde du trimestre précédent.»

Mais Jean s’objecte «Mais alors le taux annuel effectif sera plus grand
que z!»

Le banquier rétorque «Oui, mais le montant restant au temps n sera
plus petit !»

Jean trouve cela dur a croire. Est-ce vrai?

M307. Proposed by Neven Juri¢, Zagreb, Croatia.

Two 4 x 4 magic squares have the property that all four of their rows, all
four of their columns, and their two diagonals all sum to the same value V.
Consider the sum of the four corner elements of each square. Can these sums
be different, or must they be the same? (In other words, does the corner sum
depend on the square itself, or only on the magic sum N?) Either determine
the constant sum, or show that these sums can differ.
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M308. Proposed by Babis Stergiou, Chalkida, Greece.

Let ABC be aright triangle with A = 90°, and let M be the mid-point
of side AB. If D is the foot of the perpendicular from A to CM and N is
the mid-point of DC, prove that BD 1 AN.

M309. Proposed by Mihaly Bencze, Brasov, Romania.

Determine all possible non-negative integers x, y, z, and t such that
3= 4 3Y + 3% 4+ 3t is a perfect cube.

M310. Proposed by ]. Walter Lynch, Athens, GA, USA.

Four congruent rectangles are arranged in
a square pattern so that they enclose a smaller
square.

Let S be the area of the outer square and
Q the area of the inner square. If the area of
the outer square is 9 times the area of the in-
ner square, determine the ratio of the sides of the
rectangles.

M311. Proposed by Mihaly Bencze, Brasov, Romania.

Let a, b, and c be positive real numbers, and let m € (O, i) Show that
at least one of the following equations has real roots:

ar® +bxr+cm = 0,
bx? +cx+am = 0,
cx’4+ar+bm = 0.

M312. Proposed by G.P. Henderson, Garden Hill, Campbellcroft, ON.

John is negotiating the terms of a mortgage with his bank manager.
They have agreed that the loan will be for L dollars and that the annual
interest rate will be <.

John says, “I will make payments of P dollars at the end of each year
for the next n years. This is more than enough to pay the interest. The excess
will reduce the principal outstanding for the next year. At the end of n years,
I will arrange a new mortgage for the remaining principal.”

The manager responds, “I would like more frequent payments. I sug-
gest payments of P/4 each quarter-year with interest rate 7 /4 applied to the
previous quarter’s balance.”

John objects, “But then the effective annual interest rate will be greater
than 3!”

The manager replies, “Yes, but the amount outstanding at time n will
be less!”

John finds this hard to believe. Is it true?
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Mayhem Solutions

M257. Proposed by Fabio Zucca, Politecnico di Milano, Milano, Italy.

For a given positive integer k, consider the set of lattice points {(z, y)}
where x and y are integers suchthat 0 < <2k +1and 0 <y < 2k + 1.
Two points are selected at random from this set. All points have the same
probability of being selected and the points need not be distinct. Find the
probability that the area of the triangle (possibly degenerate) formed by
these two points and the point (0, 0) is an integer (possibly 0).

Solution by Hasan Denker, Istanbul, Turkey.

This problem is a generalization of Mayhem problem M253 in which
case k was equal to 3, and can be solved in a similar fashion. Noting that the
probability that a randomly selected integer between 0 and 2k + 1 is even
(or odd) is %, and using a similar argument as for M253, we find that the
probability that the area of the triangle is an integer is g. We can therefore
conclude that the probability that the area of the triangle is an integer is

independent of k.

Also solved by RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; D. KIPP JOHNSON,
Beaverton, OR, USA; and the proposer. One incorrect solution was also submitted.

M258. Proposed by Edward T.H. Wang, Wilfrid Laurier University,
Waterloo, ON.

Let ¢, d, and n be integers such that n = ¢? + d2. Prove that
n = (a? + b?)/5 for some integers a and b.

Solution by Salem Malikic, student, Sarajevo College, Sarajevo, Bosnia and
Herzegovina.

Take a = 2¢ — d and b = 2d + c. Since c and d are integers, it follows
that a and b are also integers. We then have

O e N CE Y N

Hence, such integers exist by construction.

Also solved by ARKADY ALT, San Jose, CA, USA; HOUDA ANOUN, Bordeaux, France;
HASAN DENKER, Istanbul, Turkey; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; JEAN-
DAVID HOULE, student, McGill University, Montreal, QC; and D. KIPP JOHNSON, Beaverton,
OR, USA.
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M259. Proposed by the Mayhem Staff.

The number n is formed by concatenating the strings of digits formed
by the numbers 22996 and 52°°¢. How many digits does n have?

Solution by Arkady Alt, San Jose, CA, USA.

More generally, for any natural number m, let p and g be the number
of digits in the strings of digits formed by 2™ and 5™, respectively. Then
10P~1 < 2™ < 10P and 109! < 5™ < 104. Therefore,

(10P~1)(10971) < 2™.5™ < 107 -109;

that is,
10P1t9—2 <« 10™ < 10P19.

Thus, p + g — 2 < m < p + q, which is equivalent to m = p+q — 1, or
p+q = m + 1. We can conclude that a concatenation of 2™ and 5™ has
m + 1 digits. In particular, taking m = 2006, we find that n has 2007 digits.

Also solved by HOUDA ANOUN, Bordeaux, France; ALPER CAY, Uzman Private School,
Kayseri, Turkey; HASAN DENKER, Istanbul, Turkey; RICHARD 1. HESS, Rancho Palos Verdes,

CA, USA; JEAN-DAVID HOULE, student, McGill University, Montreal, QC; D. KIPP JOHNSON,
Beaverton, OR, USA; and KUNAL SINGH, student, Kendriya Vidyalaya School, Shillong, India.

M260. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Points Ay, A4, ..., A, lie on a line, in that order, spaced a uniform
distance 2r apart. For 1 < k < n, let 'y be the circle with A,_; A as
diameter. The line through A, tangent to I',, intersects the circle ', at the
points By and Cy, for1 < k <mn — 1.

Determine the length of the line segment B, Cy for1 < k <n — 1.

Ao — ) ..., A
(= B1) Ai Az An_2 A, "
Fl rz Fn—l Fn

Solution by Richard I. Hess, Rancho Palos Verdes, CA, USA.

Let Oy, be the centre of I';,. Let M, be the mid-point of chord B, C},
for1 < k < n —1, and let M,, be the point of tangency to I',,.

Mk Mn
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Let k be fixed such that 1 < k& < n — 1. It can be seen that triangles
AgOi My, and AyO,, M, are similar. We can conclude that

Ok,Mk . Aook . 2kr —r 2k — 1

T AgO,, 2nr —r  2n—1
If we set 8, = /BiOyM;, then cos 8, = O"f‘vI" = ;’i:i Since

1 B.Cy, = rsin 6, we have
BrC,, = 2rsinf, = 2ry/1 — cos20,
2k —1\2 2
= 2r\/1—( > = r V(2n —1)2 — (2k — 1)2

2n —1 2n —1
4

= 2n_1\/(n—k)(n—|—k—1).

Also solved by KUNAL SINGH, student, Kendriya Vidyalaya School, Shillong, India.
There were two incorrect solutions submitted.

M261. Proposed by Bruce Shawyer, Memorial University of Newfound-
land, St. John’s, NL.

Rectangle ABCD has AB = % BC'. On the outside of the rectangle,
draw ADCF, where /DFC = 30° and ADF is a straight line segment.
Let E be the mid-point of AD.

Determine the measure of /ZEBF'.

Essentially the same solution by ROBERT BILINSKI, Collége Mont-
morency, Laval, QC; ALPER CAY, Uzman Private School, Kayseri, Turkey;
HASAN DENKER, Istanbul, Turkey; RICHARD I. HESS, Rancho Palos Verdes,
CA, USA; and KUNAL SINGH, student, Kendriya Vidyalaya School, Shillong,
India.

B\ C
] 1 1 3\06\‘\
A ' E ' D F

In right triangle CDF, we have /DFC = 30° and /DCF = 60°.
We can then conclude that CF = 2CD = 2AB = BC. Now, consid-
ering isosceles triangle BCF, we have /BCF = 150° and consequently,
/CBF = /CFB = 15°. Also, we know that triangle ABE is isosceles with
/ABE = /AEB = 45°. Thus,

/EBF = 90° — /ZABE — /CBF = 30°.



333

Also solved by COURTIS G. CHRYSSOSTOMOS, Larissa, Greece; JEAN-DAVID HOULE,
student, McGill University, Montreal, QC; D. KIPP JOHNSON, Beaverton, OR, USA; and
GEOFFREY A. KANDALL, Hamden, CT, USA.

M262. Proposed by Yakub N. Aliyev, Baku State University, Baku,
Azerbaijan.

Find all functions f : R — R for which f(1) = 1 and, for all real
numbers x and y, we have f(xz +y) = 3¥f(z) + 2 f(y).

Combination of similar solutions by Mohammed Aassila, Strasbourg, France;
Arkady Alt, San Jose, CA, USA; Houda Anoun, Bordeaux, France; Hasan
Denker, Istanbul, Turkey; Jean-David Houle, student, McGill University,
Montreal, QC; D. Kipp Johnson, Beaverton, OR, USA; and Gustavo Krimker,
Universidad CAECE, Buenos Aires, Argentina.

Let f be any function satisfying the given conditions f(1) = 1 and, for
all real numbers x and y,

fl@+y) = 3Vf(x) +2°f(y) . M
Setting y = 1 in (1) gives, for all z € R,
fl@+1) = 3f(x) +27r(1) = 3f(x) +2%. 2
Setting x = 1 in (1) gives, for all y € R,
fA+y) = 3YF(1) +2f(y) = 3¥+2f(y). A3)
Changing v to z in (3), we get, for all = € R,
fA+=z) = 3 +2f(z). (4)
Finally, using (2) and (4) and noting that f(z + 1) = f(1 + z), we get
3f(z) +2° = 3% + 2f(x).
Thus, f(x) = 3% — 2°.

Also solved by COURTIS G. CHRYSSOSTOMOS, Larissa, Greece; and RICHARD 1. HESS,
Rancho Palos Verdes, CA, USA.

—_—— N r—— S ———
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Problem of the Month

Ian VanderBurgh

Here is a problem that requires only some careful reasoning (albeit
pretty tricky careful reasoning) and the ability to add.

Problem (2006 Grade 8 Gauss Contest)

In the diagram, the numbers from 1 to 25 are to be arranged in the 5 x 5
grid so that each number, except 1 and 2, is the sum of two of its neighbours.

(Numbers in the grid are neighbours if their 20 | 21
squares touch along a side or at a corner. For 6 5 4
example, the “1” has 8 neighbours.) Some

. 23 7 1 3 ?
of the numbers have already been filled in. 9 T8 2
Which number must replace the “?” when the 25 124 23

grid is completed?

This is not another Sudoku—honest! It looks a bit like one, though.
That is part of the reason why this problem was included on the Contest—it
is nice to have problems that look familiar but, upon closer examination, are
a bit different.

Solution: We could just fiddle around by trial and error until we get some
numbers that work. But we will walk through the solution in a logical way.

It’s tough to know exactly where to start. First, it makes sense to check
which numbers are missing. The grid already includes the numbers 1 to 9
and 20 to 25; so those missing are 10 to 19.

Next, we could figure out which numbers in the grid are already the sum
of two neighbours. For example, 9 has neighbours 1 and 8 (and 9 = 1 + 8);
8 has neighbours 1 and 7 (and 8 = 1 + 7), and so on. Let's italicize every
number which is already the sum of two of its neighbours, as well as the
entries 1 and 2.

20 | 21
6 5 4

23| 7 1 3 ?
9 8 2

25 | 24 22

Now what? It's probably time for that tried and true problem-solving
technique—panic. After we get that out of our system, we might try looking
at some of the numbers that have almost all of their neighbours already filled
in. Also, we might as well focus on the part of the grid near the “?”.
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For example, consider 21. Since 21 already has neighbours 20 and 4, we
must write 21 as either 20 + 1 or 4 4+ 17. But the number 1 already appears
elsewhere in the grid; thus, the empty space below 21 must be 17.

20 | 21

6 5| 4 |17

23| 7 | 1 3 ?
9 8 2

25 | 24 22

Looking at 17 as we did with 21, we see that 17 must be 3 + 14 or 4 + 13;
thus, the “?” must represent either 13 or 14. But we can’t say for sure yet
which one it is.

How about 22? It cannot be 2 + 20, as 20 is already accounted for.
What two numbers add to 22 and are not yet in the grid? The only possibility
is 10 and 12, in some order. But can we tell which of 10 and 12 is placed
where? If 10 was above 22, we could not get 10 as the sum of two neighbours,
since 2 + 8 and 3 + 7 are not possible. If 12 is above 22, then 12 = 10 + 2
and 10 = 8 + 2, which can work.

20 | 21
6 | 5| 4 |17
23| 7 | 1 3] °?
9| 8| 2|12
25 | 24 10 | 22

We know that the “?” is either 13 or 14. Could it be 13? Are there two
neighbours of “?” that add to 13? No. So the “?” must be 14, which solves
the problem.

But wait! We can’t stop now! Let’s carry on a hit further.

Looking at 25, we see that 25 must be 24 + 1 (not a possibility) or
9 4+ 16. Hence, the number in the space above 25 must be 16. This now
allows us to italicize 23, 24, 25, and 16. (Why?)

20 | 21

6 | 5| 4|17

23| 7| 1 3 | 14
16| 9 | 8 | 2 | 12
25| 24 10 | 22

Try completing the rest of the grid on your own!

NN —
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THE OLYMPIAD CORNER
No. 264

R.E. Woodrow

We begin this number of the Corner with three problems from the
2003 Kiirschak Competition in Hungary. Thanks go to Christopher Small,
Canadian Team leader to the IMO in Athens, for collecting them.

2003 KURSCHAK COMPETITION

1. Let EF be a diameter of the circle I', and let e be the tangent line to T’
at E. Let A and B be any two points of e such that E is an interior point of
the segment AB, and AE - EB is a fixed constant. Let AF and BF meet T’
at A’ and B’, respectively. Prove that all such segments A’ B’ pass through
a common point.

2. We define a k-colouring of a graph G to be a colouring of its vertices
using k possible colours such that the end-points of any edge have different
colours. We say that G is uniquely k-colourable if G has a k-colouring and
any two vertices which have the same colour in one k-colouring have the
same colour in every k-colouring. Prove that if a graph G with n vertices
(n > 3) is uniquely 3-colourable, then the number of its edges is at least
2n — 3.

3. Prove that the following inequality holds for all positive integers n with
the exception of finitely many n:

n n

Z Z ged(i,j) > 4n?.

i=1j=1

Next we give the Seniors Level problems from the 215t Hellenic
Mathematical Olympiad “Archimedes” given February 7, 2004. Thanks again
go to Christopher Small.

HELLENIC MATHEMATICAL COMPETITIONS 2004

Seniors Level

1. Find the greatest possible value of the positive real number M such that,
forall z, y, z € R,

et 4yt 2t faryz(z+y+2) > M(zy +yz + zx)?.
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2. Prove that there do not exist positive integers xq, =32, ..., T,,, Where
m
m > 2, suchthatz; < z2 < -+ < xpand Y x; % =1.
=1
3. Acircle (O,7r) and a point A outside the circle are given. From A we
draw a straight line ¢, different from the line AO, which intersects the circle
at B and T", with B between A and I'. Next we draw the symmetric line of €
with respect to the axis AO, which intersects the circle at E and A, with E
between A and A.
Prove that the diagonals of the quadrilateral BT AE pass through a
fixed point; that is, they always intersect at the same point, independent of
the position of the line ¢.

L4 1Let M be a subset of the natural numbers with 2004 elements. If we
know that there is no element in M which is equal to the sum of any two
other elements of M, determine the minimum value of the greatest element
of M.

—_— N r——

Next are the 10 problems of the Vietnamese Mathematical Olympiad
in 2004. Thanks go to Christopher Small for collecting them.

VIEINAMESE MATHEMATICAL OLYMPIAD 2004

1. Solve the system of equations

3 +xy—2)? = 2,
Y +ylz—=x)? = 30,
22+ z2(x—y)? = 16.

2. Solve the system of equations

x3 4+ 3xy? = —49,
x> —8xy+y? = 8y—1Tx.

3. Let ABC bea triangle in a plane. The internal angle bisector of ZAC B
cuts the side AB at D.

Consider an arbitrary circle T'; passing through C and D so that the
lines BC and C A are not its tangents. This circle cuts the lines BC and C A
again at M and N, respectively.

(a) Prove that there exists a circle I'; touching the line DM at M and
touching the line DN at N.

(b) The circle T'; from part (a) cuts the lines BC and C A again at P and Q,
respectively. Prove that the measures of the segments M P and NQ
are constant as I'; varies.
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4. Given an acute triangle ABC inscribed in a circle T in a plane, let H be
its orthocentre. On the arc BC of T not containing A, take a point P distinct
from B and C. Let D be the point such that AD = PC. Let K be the
orthocentre of triangle ACD, and let E and F be the orthogonal projections
of K onto the lines BC and A B, respectively. Prove that the line EF passes
through the mid-point of HK .

5. Consider the sequence of real numbers {x,}22 , defined by ; = 1 and

(2 + cos 2a)z,, + cos? a

x e
i (2 — 2cos2a)x, + 2 — cos 2a
for everyn =1, 2, ..., where « is a real parameter. Foreachn =1, 2, ...,
n
let y, = > _ 1 Determine all values of a so that the sequence
k=1 2:13;;, -|- 1

{yn}52_, has a finite limit. Find this limit in these cases.

6. Find the least value and the greatest value of the expression
. ZB4 + y4 _+_ Z4
CEEEN

where z, y, and z are positive real numbers satisfying the condition

(x+y+2)° = 32zyz.

7. Find all triples of positive integers (x, y, z) satisfying the condition

(z+y)(1 +=zy) = 27%.

8. Let A be the set of the first 16 positive integers. Find the least positive
integer k satisfying the following condition: in each subset consisting of &
elements of A, there exist two distinct elements a and b such that a2 + b2 is
a prime number.

9. Let n be an integer, n > 2. Prove that for every integer k such that
2n —3 < k < n(n—1)/2, there exist n distinct real numbers a1, az, ..., an
such that among all numbers of the form a; + a;, 1 < ¢ < j < n, there exist
exactly k distinct numbers.

10. For every positive integer n, let S(n) be the sum of all digits in the

decimal representation of n. If m is a positive integral multiple of 2003, find
the least value of S(m).

—_— N r————
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And to round out your problem pleasures, we give the Selected Camp
Problems from the 2004 Taiwanese Mathematical Olympiad. Once again,
thanks go to Christopher Small, Canadian Team Leader to the IMO in Athens,
for collecting them for our use.

2004 TAIWANESE MATHEMATICAL OLYMPIAD
Selected Camp Problems

1. ret Ny denote the set of non-negative integers. Find all functions
f : Ng — Ng such that f(83m + 2n) = f(m) - f(n) for all m, n € Ny.

2. Find all pairs of positive integers (a, b) satisfying

ab a -+ 2b

2b2 —a 4b

3. Suppose that the points D and F lie on the circumcircle of AABC, ray
—_— —_—

AD is the interior angle bisector of /BAC, and ray AFE is the exterior angle
bisector of /ZBAC'. Let F be the symmetrical point of A with respect to D,
and let G be the symmetrical point of A with respect to E. Prove that, if the
circumcircle of AADG and the circumcircle of AAEF intersect at P, then
AP is parallel to BC.

4 1et O and H be the circumcentre and orthocentre of an acute triangle
ABC. Suppose that the bisectrix of ZBAC intersects the circumcircle of
AABC at D, and that the points E and F are symmetrical points of D with
respect to BC and O, respectively. If AE and FH intersect at G and if M
is the mid-point of BC, prove that GM is perpendicular to AF.

5. A one-to-one function f : Z — R is given (where Z is the set of integers
and R is the set of real numbers). Also given are n different positive integers
ai, az, ..., a,. Prove that there exists an integer p such that, among the set
of 2n integers p — a1, p+a1,p—az, p+asz, ..., p— an, p+ a,, there are
at least n integers b such that f(b) > f(p).

6. The seats at the Christmas Feast for the company “Enough” are arranged
in a square consisting of 10 rows with 10 seats in each row. All 100 workers
have different salaries. Each of them asks all his neighbours (those workers
sitting immediately beside him, in front of him, or behind him—four people
at most) how much they earn. A worker feels content with his salary only
if he has at most one neighbour who earns more than himself. What is the
maximum possible number of workers who are satisfied with their salaries?

—_— N r————
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Next we give an alternate solution to a problem of the Singapore
Mathematical Olympiad given in [2005 : 216]. A solution was published
last year [2006 : 386].

4. Find all real-valued functions f : @ — R defined on the set of all
rational numbers Q satisfying the conditions

fl@+y) = fl@)+ fy) + 22y,
for all z, y in Q and f(1) = 2002. ]Justify your answers.
Alternate Solution by Li Zhou, Polk Community College, Winter Haven, FL,
USA.
Let g(z) = f(x) — 2 for x € Q. Then, forall z, y € Q,
gz+y) = flz+y)—(z+y)*
= f(®)+ f(y) +2zy — (z+9)* = g(z)+9(y)-

This is the well-known Cauchy Equation, whose solutions are g(z) = cz,
where c is a constant. Hence, f(z) = 2 + 2001z (since f(1) = 2002).

—_—_— N~ S ——————

Readers’ solutions to some of the problems from the 38™ Mongolian
Mathematical Olympiad, given in [2005 : 505], were presented in the March
issue of the Corner [2007 : 86-88]. Next we look at solutions to two problems
not discussed there.

3. The incircle of triangle ABC with AB # BC touches sides BC and AC
at points A; and Bj, respectively. The segments AA; and BB; meet the
incircle at A, and B, respectively. Prove that the lines AB, A;B;, and
A5 B5 are concurrent.

Solution by Michel Bataille, Rouen, France.
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Let the incircle T touch the side AB at C; and let a = BC, b = CA,
c¢=AB,and s = (a+ b+ c). Since

AB; CA, BC; _s—a s—c s—b
Bi.C AiB Ci1A s—c s—b s—a

=1,

Ceva’'s Theorem shows that the lines AA;, BB, and CC; are concurrent,
say at U (U is the Gergonne Point of the triangle).

Let V be the pole of the line CC; with respect to the circle I'. Since
CA, and CB; are tangent to I at A; and B, respectively, the polar of C
with respect to I' is the line A;B;. By polar reciprocity, V is on A;B;.
Similarly, the polar of C; is the line AB; hence, V is on AB. Now, let A, B,
and A, B, meet at W. Since A; A, and B; B, meet at U, the polar of W
with respect to I" passes through U. But this polar also passes through C
(since W is on A;B;). Thus, the polar of W is CU = CC; and W = V.
Finally, V is on AB, A;B;, and A;B5 and the result follows.

6. Let A,, By, and C; be the respective mid-points of the sides BC, AC,
and AB of triangle ABC'. Take a point K on the segment C; A; and a point
L on the segment A, B; such that

Ci1K _ BC+ AC an AL  AC+ AB
KA,  AC+ AB LB, AB+ BC’

Let S = BK N CL. Show that Z/C1A;S = /B, A;S.

Solution by Michel Bataille, Rouen, France.

As usual, let a = BC, b = CA, and ¢ = AB. Denote by d(X,Y Z)
the distance from point X to the line Y Z and by [ XY Z] the area of triangle
XY Z. Since S is interior to A A, B;C4, the desired conclusion is successively
equivalent to

S is on the internal bisector of /B A,C,,
d(S,A,Cy) = d(S,A1By),
ABy - A;Cy - d(S,A1Cy) = ALCy- A1By -d(S,A1By),
c-[SA;Cy] = b-[SA1B]. 1)

Denote by X the vector to X from a fixed origin. From the hypotheses,
we have

(a+2b+c)K = (a+b)As+ (b+c)Cy

(@a+b+20)L = (a+c)A; + (b+c)By
— — — — — — — —
B:Al—B1+Cl and C:A1+B1—Cl.
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Thus,

— — — — — — —
(a4+2b+c¢)K —bB = (a4+b+2¢)L —cC = aA;+bB1+cCq;
whence (since S = BK N CL),

— — — —
(a+b4+¢)S = aA1+bB1+cC1.

Asaresult,a:b:c=[SB:C1]: [SC1A;]: [SA;1B;], and (1) follows.

Note: Since B;C; = 3a, C1A; = 3b, and A;B; = 1c, the result just
obtained even shows that S is the incentre of AA;B;C;.

—_— N

Also in the March Corner were some readers’ solutions to problems of
the 19t Balkan Mathematical Olympiad, given in [2005 : 506]. For these
solutions, see [2007 : 88-90]. We now present another solution.

2. The sequence aq, az, ..., Gy, ... is defined by
a, = 20, az = 30, Apt2 = 3an+1 — Qp, forn > 1.
Find all positive integers n for which 1 + 5a,a,+1 is a perfect square.

Solution by Michel Bataille, Rouen, France.

Since az = 70 and a4 = 180, we have 1 + 5asa, = 63001 = 2512.
Thus, n = 3 is a solution. We show that there is no other solution.

Leta = (1++/5)/2and 3 = (1—+/5)/2, and let { F,,} be the Fibonacci
sequence, given by F,, = (a™ — 8%)/v/5, (n = 0, 1, 2, ...). Since the
solutions to the equation 2 — 3x + 1 = 0 are o2 and 32, the classical
method easily leads to

a, = 108%a®™ + 10a%8%*" = 10(a*""2 4 2"~ 2),
where the latter equality follows from a3 = —1. Using this, we see that
1+ 5anany; = 501 + (50F%,_1)2.
Now, if this integer is a perfect square, say K2, we have
501 = (K — 50Fs,_1)(K + 50F5,_1) .

Thus, either K —50F,,,_1 = 3and K +50F,,,_1 = 1670or K —50F,,,_1 =1
and K +50F5,,_1 = 501. The first case yields 25F,,,_; = 41, which is clearly
impossible. The second case gives Fy,,_; = 5, whichimplies that n = 3. This
completes the proof.

—_—_— N~ S O ————
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An eagle-eyed reader has pointed out a slight oversight in the remark
given with the solution to problem 3 of the Bulgarian Mathematical Olympiad
[2005 : 506-507] discussed at [2007 : 89-90].

Comment by Daniel Tsai, student, Taipei American School, Taipei, Taiwan,
modified by the editor.

In the solution to problem 3 of the Bulgarian Mathematical Olympiad,
Final Round, 2003, given in the March 2007 issue of CRUX with MAYHEM,
is the remark that z,, = fa,41 for all n > 1. But for n = 1, we have
£y = 1 # 2 = f3. The remark should have stated that x=,, = f2,_3 for
n > 2.

—_—_—— N r——— S ——— ——

Now we turn to our file of solutions from our readers to problems
given in the October 2006 issue of the Corner. We begin with solutions to
problems of the First Round of the Iranian Mathematical Olympiad given at
[2006 : 372].

1. Find all permutations (ai,...,a,) of (1,...,n) which have the property
that < + 1 divides 2(ay + +-- + a;) forevery i, 1 < i < n.

Solution par Pierre Bornsztein, Maisons-Laffitte, France.

Pour n = 1, il n’existe évidemment qu’une seule permutation adéquate.
Nous allons prouver que, pour tout n > 2, il existe exactement deux telles
permutations, qui sont (1,2,3,4,...,n) et (2,1,3,4,...,n).

On vérifie directement que c'est le cas pour n = 2 et n = 3. De
plus, il est facile de vérifier que ces deux permutations ont bien la propriété
demandée pour tout n > 2.

Supposons que I'affirmation soit vraie pour n — 1 > 2. On considére

une permutation (a1, asz,...,ay,) de (1,2,...,n) ayant la propriété requise
par I’énoncé. On va prouver que a,, = mn. Alors I’hypothése de récurrence
assurera que (aq,a2,...,a,-1)est(1,2,3,...,n—1)ou(2,1,3,...,n—1).

On sait que 2(a1+az+--+ay,) = 2(14+24---4+n) = n(n+1). Aussi,
d’apres la propriété de I’énoncég, on sait que n divise 2(a; +az+---+an_1).
Par suite, n divise 2a,,.

Cas 1. Si n est impair, il vient immédiatement que n divise a,,. Et, comme
a, € {1, ..., n}, cest donc que a,, = n.

Cas 2. Sin = 2k, on doit avoir a,, divisible par k. Si a,, # n, comme a,, < 2k,
c'est donc que a,, = k. Maisn — 1 = 2k — 1 divise

2(a;+az+:-+an—2) = nn+1) —2a, —2a,_1
= 2k(2k+1) — 2k — 2a,_; .

Comme 2k — 1 est impair, on en déduit que 2k — 1 divise

k(2k+1)—k—ap—1 = k—ap—1 (mod 2k —1) .
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Puisque a,,—1 € {1, ..., 2k}, ona -k < k —a,—1 < k — 1. La seule
possibilité d’avoir un multiple de 2k — 1 est donc que k£ — a,,_; = 0, ou
encore a,,_; = k = a,, ce qui est impossible. Donc, on a bien a,, = n et
cela achéve la démonstration.

4 1et A and B be two fixed points in the plane. Let ABCD be a convex
quadrilateral such that AB = BC, AD = DC, and ZADC = 90°. Prove
that there is a fixed point P such that, for every such quadrilateral ABC D
on the same side of the line AB, the line DC passes through P.

Solution by Michel Bataille, Rouen, France, modified by the editor.

On the same side of AB as the
quadrilateral ABC D, draw the semi- D
circle (S) with centre B and radius
BA, and the ray (R) originating at
B and perpendicular to BA. We
will show that all the lines CD pass
through the point of intersection of
(S) and (R).
Let ABCD be an arbitrary
quadrilateral satisfying the given A
conditions, and let P be the point of
intersection of CD and (R).
We complete the proof by showing that this point P is on (S); that is,
BP = BC. Let Z(¢,£') denote the directed angle of the lines £ and ¢’. Our
goal will be reached if we prove the equality /(PB, PC) = /(CP,CB).
We will use the fact that AADC is right-angled and isosceles and that
A, D, P, and B are concyclic (on the circle with diameter AP). Note also
that BD is perpendicular to AC (since BA = BC and DA = DC).
First, Z(PB, PC) = 4(PB,PD) — = = Z(AB, AD). Then,

/(CP,CB) = /(CP,CA)+ /(CA,CB)
= /(AC,AD) + /(AB, AC)
(since AD = DC and AB = BC)
= /(AB, AD),

and the result follows.

5. Let 6 be a symbol such that § # 0 and 62 = 0. Define

R[] = {a+bd|a,beR}
a+bd=c+dé < a=cand b=d,

(a4+bd)+(c+dd) = (a+c)+ (b+d)J,
(a+bd)-(c+dd) = ac+ (ad+ be)d.

Let P(x) be a polynomial with real coefficients. Show that P(x) has a
multiple root in R if and only if P(x) has a non-real root in R[4].
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Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We give Bataille’s version.

Let a, b € R. An easy induction shows that for all n € IN, we have
(a +bd)™ = a™ + na™ 1bs. It follows that

P(x +yd) = P(z)+ P'(x)ys M

for all real x and y.
If P(x) has a multiple root zo in R, then P(zo) = P’(x¢) = 0 and,
from (1), we have P(xo + ) = 0. Thus, P(z) has a non-real root in R[d].
Conversely, if P(a + bd) = 0 for some real numbers a and b with
b # 0, then, from (1) again, P(a) + P’(a)bd = 0 = 0 + 04. Hence,
P(a) = P’(a) = 0 and a is a multiple real root of P(x).

6. Let G be a simple graph with 100 edges on 20 vertices. We can choose a
pair of disjoint edges in 4050 ways. Prove that G is regular.

Solution par Pierre Bornsztein, Maisons-Laffitte, France.

Soient V4, ..., Voo les sommets de G, de degrés respectifs dy, ..., dao.
11 s’agit de prouver que dy = - - - = dag.

Or, on sait que la somme des degrés est le double du nombre d’arétes,
donc

20
> d; = 200. ey
=1

Soit (V;, V;) une aréte. Il y a exactement 100 — (d; +d; —1) = 101 —(d; +d;)
arétes disjointes de (V;, V;). Et donc autant de paires d’arétes disjointes dont
une est (V;, V;). En sommant sur I’ensemble des arétes, on obtient ainsi le
double du nombre de paires d’arétes disjointes (chacune est obtenue deux
fois dans le raisonnement précédent).
Il vient donc Y [101 — (d; 4+ d;j)] = 2 X 4050, ou encore
(Vi Vj)
> (di +dj) = 101 x 100 — 2 X 4050 = 2000 .
Vi, vj)
Or, dans la somme ci-dessus, chaque d; apparait autant de fois qu’il existe

d’arétes dont un sommet est V;, soit donc exactement d; fois. Par conséquent,
ona 20

2000 = > (di+d;) = > d7.

(Vi,V3) =1
Mais, d’aprés (1) et I'inégalité entre les moyennes arithmétiques et quadra-
tiques (AM/QM), on a alors
20 , 1 /20 2
2000 = d; > — d; = 2000.

On est donc dans un cas d’égalité de AM/QM, ce qui signifie que tous les d;
sont égaux, comme désiré.
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Next we look at solutions from our readers to problems of the Second
Round of the Iranian Mathematical Olympiad 2002 given at [2006 : 373].

1. The sequence {a,} is defined by ap = 2,a1 =1, and apn+1 = an + an—1
for n > 1. Show that if p is a prime factor of as;, — 2, then p is a factor of
azp4+1 — 1.

Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We first give Bataille’s exposition, followed by Bornsztein’s.

The sequence {a,} is the Lucas sequence, often associated with the
Fibonacci sequence {f,} defined by fo =0, f1 =1, and fr41 = frn + frn-1

for n > 1. Asis well known, a,, = o™ + 8" and f,, = %(a" — g™), for

n=0,1,2, ..., where a = 1"‘2—‘/gandﬁz % Note that « + 3 = 1 and
a3 = —1. From these results, the following formulas are readily deduced:

Qant2 —2 = agn_H , ¢))

Qant3 —1 = azni2a2n41, 2

asm —2 = 5f2, (3)

ant1 —1 = 5fanfont1- (4)

Suppose first that & is odd, say k = 2n + 1 for some n > 0. If pis
a prime factor of azr — 2 = aqny2 — 2, then, from (1), p is a prime factor
of a3, , and hence of az,1. Therefore, from (2), p is a prime factor of
azg+1 — 1 = agpys — 1.

Similarly, if k is even, we deduce from (3) that a prime factor of asy — 2
is 5 or a prime factor of f2,,. In any case, as (4) shows, this prime factor

divides azk+1 — 1.

Nous donnons aussi I’approche de Bornsztein.

On pose U,, = an_1Gn4+1 — ai- On a directement U; = 5. Et, pour
tout n > 1, il vient :

2 2 2
Un+1 = Qnlp42 — 0y 1 = Anln4id + a, —a,q

= ant1(an — ant1) + @2 = anti(—an_1) +a2 = —U,.

Par conséquent, pour toutn > 1,ona U,, = 5(—1)"—1, ou encore

Ap—10nt1 — ai = 5(—1)""L. 1
Soit p un nombre premier qui divise azx — 2; donc azx = 2 (mod p).
D’apres (1), on a a%k — 5 = azk—1a2k41 = (@2k41 — G2k)@2k41, PUIS

—1 = a};,, — 2a2x4+1 (mod p), ou encore (azg+1 — 1) = 0 (mod p).
Ainsi, p divise agi1 — 1, comme désiré.

2. LetAbea point outside the circle 2. The tangents from A to 2 touch Q at
B and C. A tangent L to Q intersects AB and AC at P and Q, respectively.
The line parallel to AC passing through P meets BC at R. Prove that as L
varies, QR passes through a fixed point.
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Comment by Michel Bataille, Rouen, France.

This problem is not new. It is problem 2639 ([2001 : 268; 2002 : 272]).
Two different solutions were given in the May 2002 issue.

4 Find the smallest positive integer n for which the following condition
holds: For every finite set of points in the plane, if, for every n points in
this set, there exist two lines covering all n points, then there exist two lines
covering all points in the set.

Solution par Pierre Bornsztein, Maisons-Laffitte, France.

Le plus petit entier n cherché est n = 6.

Soit £5 I’ensemble formé des points A(0, 0), B(2,0), C(2,2), D(0,2),
M(0,1) et £2(1,1). Les schémas suivant montrent que toute partie 2 5
éléments de &5 peut étre recouverte par deux droites.

| XN K

Par contre, £5 ne peut étre recouvert par deux droites : en effet, comme
&s ne contient pas quatre points alignés, tout recouvrement éventuel de £x
par deux droites se ferait par deux droites contenant chacune trois points.
Le seul groupe de trois points alignés contenant M est A, M, D. Ainsi,
c’est nécessairement I'un des deux groupes qui définit une des deux droites.
L’autre doit alors passer par les trois points restant, mais ceux-ci ne sont pas
alignés. Cela prouve que n = 5 n’a pas la propriété désirée.

On prouve maintenant n = 6 posséde la propriété de I’énoncé. Cela
étant, il convient d’intérpréter cette condition en :

For every finite set of at least n points in the plane, if, for every n
points in this set, there exist two lines covering all n points, then
there exist two lines covering all points in the set.

Sinon, il n’existe aucun entier vérifiant la condition demandée (prendre
I’ensemble des sommets d’un pentagone régulier. Pour n > 6, il n’existe
aucun ensemble de n points dans cet ensemble donc les prémisses sont tri-
vialement vérifiées, mais I’ensemble ne peut étre recouvert par deux droites).

Soit £ un ensemble d’au moins 6 points tel que tout sous-ensemble de
6 points de £ puisse étre recouvert par deux droites.

Soit F C &, avec |F| = 6. Comme F peut étre recouvert par deux
droites, le principe des tiroirs assure qu’au moins trois des points de F, et
donc de &, sont alignés. Disons que A, B, C sont trois points, deux a deux
distincts, alignés et appartenant a3 £. On note A la droite (AB).

Si £ — A ne contient pas plus de deux points, alors £ peut clairement
étre recouvert par deux droites. Si £ — A contient au moins trois éléments :
Soient X et Y deux points distincts dans £ — A. On note A’ le droite (XY).
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Pour tout point M € £ — A, autre que X et Y, I'’ensemble formé des points
A, B, C, X, Y, M peut étre recouvert par deux droites. Si aucune de ces
deux droites n’est A, celle qui recouvre A ne recouvre ni B ni C. Donc I’autre
doit recouvrir a la fois B et C, mais alors c’est A, une contradiction.

Ainsi, I'une des deux droites est A. I’autre doit nécessairement recou-
vrir les points X, Y et M, ce qui prouve que M € A’.

Par conséquent, tout point de £ appartient a3 A oua A’, et donc € peut
étre recouvert par deux droites.

6. Let a, b, and c be positive real numbers such that a2 + b2 + ¢2 + abc = 4.
Prove thata + b + ¢ < 3.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Maisons-
Laffitte, France; José Luis Diaz-Barrero, Universitat Politécnica de Catalunya,
Barcelona, Spain; and Vedula N. Murty, Dover, PA, USA. We first give the
solution of Diaz-Barrero, using a classic change of variables and geometry.

Settinga = 2cos A, b = 2cos B, and ¢ = 2 cos C, with A+B+C = m,
we have

a® 4+ b% + % + abe

= 4cos?A + 4cos’B + 40052(A + B) — 8cos A cos B cos(A + B)
4cos?A + 4cos’B — 4 cos?A cos?B + 4sin?Asin’B
= 4sin2B(cos2A + sin2A) + 4cos®B = 4.

Taking into account Euler’s Ineguality, R > 2r, and the well-known identity
cosA+cosB +cosC =1+ B we get

a+b+c = 2(cosA+cosB+cosC) = 2(1+%) < 3.

Note that equality holds whena =b=c = 1.
Next we give the solution of Murty.

Without loss of generality, we assume that 0 < a < b < c¢. From
a? + b2 +c? 4+ abc = 4wededucethat 0 < a < 1,0 < b < 2, and
1 <c< 2 Nowc?+ c(ab) + a? + b2 — 4 = 0 is a quadratic equation in ¢
and the positive root is

e = Y(-ab+ /A=A ).

Hence, a + b + ¢ < 3 if and only if

V(@4 —a2)(4—1b2) < 6—2a—2b+ab. 1)
From the AM-GM Inequality, we have

VA= a)[@—8%) < (8- (a%+1b?)).
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We now prove that
1(8—(a?+b?)) < 6—2a—2b+ab. (2)

This inequality is equivalent to (a + b)2 — 4(a + b) + 4 > 0, which factors
as (a + b —2)2 > 0. Thus (2) is true. Then (1) is true. Equality is attained
whena=b=c=1.

—_—_—mmmme N r,———— ——

Finally, we look at solutions from our readers to problems of the Third
Round of the Iranian Mathematical Olympiad 2002 given in [2006 : 373-374].

1. Find all real polynomials P(x) such that P(a) € Z implies that a € Z.

Solution par Pierre Bornsztein, Maisons-Laffitte, France.

Les solutions sont les polynémes constants et ceux de la forme
P(x) = (xz + b)/c, ou b et c sont deux entiers avec ¢ # 0.

Il est facile de vérifier que les polynémes ci-dessus conviennent
effectivement.

Soit P un polynéme non constant ayant la propriété de I’énoncé. Quitte
a changer P en — P, on peut supposer que

lim P(z) = 4+oco. ¢))
xr— -+ oo
Cas 1. On suppose que P est de degré au moins égal 3 2.
D’aprés (1), on a alors
lir-i{l P'(z) = +oo. 2
D’aprés (1) et (2), et puisqu’il s’agit de polynémes, il existe donc A > O tel
que P et P’ soient strictement croissants sur [A, +o00). Toujours d’apres (2),
on peut également supposer que

P'(z) > 2 pour = > A. (3)

Soit ¢ un entier tel que ¢ > P(A). D’aprés la propriété de 1'énoncé et le
théoréme des valeurs intermédiaries, pour tout entier n > 0, il existe un
entier x,, > A tel que

P(z,) = q+n. (4)
Puisque P est strictement croissant sur [A,+o0), la suite {z,,} est donc
strictement croissante. En particulier, s’agissant d’entiers, on a

Tp+1— Tn, > 1 pourtoutn > 0. (5)

D’aprés le théoréme des accroissements finis, pour tout entier n > 0,
il existe y,, € [mnawn-l-l] tel que P(xn-l-l) — P(x,) = (mn—l-l — Zn) P’ (Yn)-
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D’aprés (3) et (5), on a donc P(xy,+1) — P(x,) > 2. Mais, d’'aprés (4), on a
P(xy+1) — P(x,) = 1, une contradiction. 1l n’existe donc aucun polynéme
de degré supérieur ou égal 3 2 possédant la propriété désirée.

Cas 2. On suppose que P(z) = ax + 3, ol « et 3 sont des réels et a > 0.
Alors, d’apres la propriété de I’énoncg, ils existent deux entiers xo et x; tels
que P(xz9) = 0 et P(x1) = 1. Donc azg + 3 = 0etax; + 3 = 1, d'ou
a(x; —xg) = 1. Onaxz; — xg > 0, puisque o > 0. Soit ¢ = 1 — x¢. Alors
a=1/cet 3 = —xzo/c, ce qui prouve que P est bien de la forme annoncé
et achéve la démonstration.

3. mna triangle ABC, define C, to be the circle tangent to AB, to AC, and
to the incircle of the triangle ABC, and let r, be the radius of C,. Define
ry and r. in the same way. Prove that r, 4+ r, + r. > 4r, where r is the
inradius of the triangle ABC.

Solution by Michel Bataille, Rouen, France.

The given inequality is false (for example r, = r, = r. = 3 in an
equilateral triangle). We will prove instead that
ra+rb+rc2r' (1)

The circle C, is the image of the incircle in the homothety with centre
A and scale factor r,/r. Hence, if I is the incentre and I, is the centre of

C,, we have AI, = %" Al , which can be rewritten as
—_— r —_—
i1, = (—“ - 1) Al
T
Since v, < r and II, = r + 74, it follows that
Ta Al —r 2AT 2 2

v T artr - ar+r Y T ix@/an ' T Tsm@m b

Similar results hold for r, and r.. Thus, we see that (1) is equivalent to

1 1 1
1+ sin(A/2) + 1+ sin(B/2) +

1+ sin(C/2) z 2. @)

The function f(z) = 1/(1+sinx) is strictly convex on (0, Z) (its second
derivative is f”/(z) = (1 + sinz)~3(1 + sin z + cos? x), which is positive);
hence,

FE) (241 (§) 2 0 (A1)~ as(7) =2

Therefore, (2) holds. Equality is attained in (2) if and only if A = B = C;
that is, if and only if AABC is equilateral.

—_—— N r—— S ———

That completes the material for this number of the Corner. Please send
your nice generalizations and solutions as well as Olympiad Contests.
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BOOK REVIEWS

John Grant McLoughlin

First Steps for Math Olympians: Using the American Mathematics
Competitions

By ]J. Douglas Faires, Mathematical Association of America, 2006

ISBN 0-88385-824-X, hardcover, 307 +xxii pages, US$46.50

Reviewed by Robert D. Poodiack, Norwich University, Northfield,
Vermont, USA

This excellent book adds to the problem-solving literature not only as a
source of problems and solutions, but also as a primer of concepts and tech-
niques for problem-solving. The book is limited, however, to pre-calculus
mathematics.

In the introduction, Professor Faires writes about the history of, and
his own involvement with, the American High School Mathematics Exami-
nation. This examination, now split into grade levels as part of the American
Mathematics Competition (AMC), has been widely used as a springboard
for students toward taking the American Invitational Mathematics Examina-
tion (AIME). Students who do well enough on the AIME may be asked to
participate in the United States of America Mathematical Olympiad and the
International Mathematical Olympiad.

The book is split into 18 chapters, each dealing with a single topic.
The topics range through arithmetic and algebra, functions and geometry,
sequences and series, probability and statistics, and trigonometry and basic
number theory. Most chapters begin with an enumeration of basic defini-
tions and results. Few formal proofs are included, most likely for brevity.
For many results, though, an idea of why the result is true is included. As
the target audience is high school students, this is not a large problem.

In each chapter, major theorems are presented for drill purposes. By
organizing the book according to topics rather than presenting old AMC ex-
ams in chronological order, the author has made this book easier to use
than the various MAA olympiad question books (where important results
are listed in alphabetical order in an appendix). The sheer number of results
can be mind-boggling, especially in the geometry sections, but they will all
be recognized as useful by anyone who has studied mathematics competition
problem collections. (I had only a vague recollection of the Tangent Chord
Theorem or the External Secant Theorem myself!)

The meat of the book is, of course, in the problems. All the problems
in the book are taken from old AMC exams. Each chapter ends with three
completely solved “examples,” in increasing order of difficulty, followed by a
set of 10 related exercises, whose answers are in the back of the book. As in
the actual AMC exams, all of the examples and exercises are multiple-choice.
The problems and solutions presented are quite stimulating and ingenious.
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Topics worthy of student research are sometimes introduced in a disguised
manner.
For instance, Exercise 8 in Chapter 12, on sequences and series, reads:

Alice, Bob, and Carol repeatedly take turns tossing a fair regular
six-sided die. Alice begins; Bob always follows Alice; Carol always
follows Bob; and Alice always follows Carol. Find the probability
that Carol will be the first to toss a six.

In addition to the solution involving an infinite geometric series, this example
can lead to a discussion of probability “trees” that contain “wreaths” in their
structure. If we change the probabilities of success for each person, we enter
the theory of three-way duels!

In another example, in the chapter on functions, students are asked to
find the maximum value of

flx) = V8x — 22 — \/14x — 22 — 48.

The author presents a canny solution involving the geometry of semi-circles
and, most notably, no calculus.

In his solution to the previous problem, Professor Faires makes a point
of noting that “no problem on the AMC has a calculus solution that is eas-
ier than some non-calculus solution”. Given the intended audience of high-
school and middle-school students, the AMC exams and this book leave out
calculus altogether, as well as other advanced topics. University competitors
will want to augment this book with another more advanced competition
book.

My only complaints about the book are organizational. Since the full
solutions to all of the exercises are given in the back of the book, it would
have been nice for the questions and answer choices to be reprinted with
them. For old forgetful folks like me, some cross-referencing of page numbers
between questions and answers would have been welcome.

These are mere quibbles, though. First Steps for Math Olympians is
an excellent introductory primer for any precocious student gearing up for
the AMC exam. Professor Faires has provided a well-organized, easily di-
gested study guide appropriate for high-school and middle-school students
as well as any college student just starting out in competitions. The volume
and quality of problems make the book worthwhile for students and coaches
alike. I plan on paying the ultimate compliment of filching some of these
problems for a competition I organize this year!
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The Edge of the Mathematical Universe:

Celebrating 10 Years of Math Horizons
Edited by Deanna Haunsperger and Stephen Kennedy, Mathematical
Association of America, 2006
ISBN 0-88385-550-0, hardcover, xii+303 pages, US$57.50.
Reviewed by John Grant McLoughlin, University of New Brunswick,
Fredericton, NB.

Wow! Some books arrive that have me saying, “I'll review that one!”
This is one of those books. The collection of articles and the overall pre-
sentation of The Edge of the Mathematical Universe invite distraction from
other activities as one engages with the mathematical playfulness evident on
its pages. The book is a tribute to the MAA publication, Math Horizons.
The editors, Deanna Haunsperger and Stephen Kennedy, guided Math Hori-
zons through the second half of its first decade when they took over from
founding editor Donald Albers. Here they organize a selection of approxi-
mately 75 articles chronologically ordered into a resource that belongs in the
lounges and reading rooms of mathematics departments and mathematicians
alike. The chronological ordering of articles may be displeasing to those who
find the seemingly jumpy nature of the topics to be less than ideal. Person-
ally, I found the presentation more like that of a Martin Gardner book which
likewise typically consists of segments arising out of columns that may be
seemingly unrelated to their immediate neighbours.

The authors (Guy, Gardner, Wagon, Dudley, Dunham, ...) will be
familiar to any reader of recreational mathematics or other material geared
to undergraduate or senior secondary mathematical audiences. Anyone read-
ing this review is bound to enjoy the offerings of this book. There really is
no simple way to capture its scope and breadth. Readers familiar with Math
Horizons will have a sense of what to expect; the rest of you may wish to avail
of a genuine mathematical smorgasbord of ideas. The table of contents spans
four pages. The opening article, entitled “John Horton Conway—Talking a
Good Game” (reprinted from Spring 1994), and the closing article, “Knots to
You” (reprinted from November 2003), surround an assortment of others,
including: “Weird Dice”, “The Instability of Democratic Decisions”, “Was
Gauss Smart?”, “Egyptian Rope, Japanese Paper and High School Math”,
and “The World’'s First Mathematics Textbook”.

Rarely have I seen such a wonderful assortment of mathematics dis-
played in such an accessible manner. This book would be a rich resource
for mathematics clubs, budding secondary school mathematicians, or
anyone further along in their mathematical journey. This may become a
core reference in one of my future courses with prospective or practicing
mathematics teachers, as it offers plenty of content along with insight into
what doing mathematics is really about.

Y WSS L W
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The Converse of Schiffler’'s Theorem

Joe Goggins

The Schiffler point of a triangle is named after the proposer of problem
1018 [1985 : 51; 1986 : 150-152]. We have recently observed the twentieth
anniversary of this notable discovery, and while the explosion of interest in
the topic continues to amaze us, at least one simple aspect seems to have
been overlooked. The situation is this: If P is a point in the plane of triangle
ABC, but not on any of its side lines, then the Euler lines of the four trian-
gles ABC, PBC, APC, and ABP may or may not concur. Kurt Schiffler
discovered that when P is located at the incentre of AABC, then the Euler
lines concur at the point now bearing his name. Let us use the notation found
in Clark Kimberling’s Encyclopedia of Triangle Centers (ETC) [3], where the
incentre is denoted by X; and the Schiffler point by X5;. Schiffler’'s Theorem
is then

P = X, implies the four Euler lines concur at Xs;.

The converse, however, is false since there is a second valid solution
that appears in ETC as X3gg5:

The concurrence of the Euler lines at X,; implies that P = X; or

P = X3065-
Confirming that X3gg5 is defined by trilinear coordinates x : y : z, where
1
€T = ’
1+ 2(cos A — cos B — cos C)
. 1
Y= + 2(cos B —cosC —cos A) '
1
and z =

14 2(cosC — cos A —cos B)

gives impetus to further investigations. The point X365 turns out to be the
isogonal conjugate of X g4 (the first Evans perspector), which we write as
X065 = X gy Bernard Gibert mentions the point X5, on his website [2]
as E546, but not in connection with X»; and the concurrence properties that
are of interest here.

Although there is an elementary geometric proof of Schiffler’s theorem
in Crux Mathematicorum, 1 have yet to find a comparable argument for the
converse. However, since we know the trilinear coordinates of X365 and
X21, we can find the equations of the Euler lines of ABX3¢65, €tc., and
confirm algebraically that these Euler lines do indeed pass through Xo;.

The point X3g65 = X 4_811 has a relatively simple construction, as indi-
cated in Figure 1 (based on the description of X454 in ETC):

Copyright © 2007 Canadian Mathematical Society
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. Locate the incentre I and the excentres I4, Ig, and I of AABC.

. Define A’, B’, and C’ to be the reflected images of the vertices A, B,
and C in the opposite sides BC, C A, and AB, respectively.

. Define D to be the point of concurrence of lines A’T,, B'Ig, and C'I
(concurrent specifically at point X4g4, the first Evans perspector).

. Define D4, Dg, and D¢ to be the reflections of D in AI, BI, and C1I,
respectively.

. The required point X5, is the point of concurrence of lines AD,,

BDg, and CDc (concurrent specifically at the isogonal conjugate of
pOint X484).

Ic
Dp
A
C' —_— IB
Xign ——>
I/ C
- . %
Ia B’
A’ De

D

Figure 1: Construction of Xgge5 = X 4_8%1
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Not unexpectedly, our converse has a more general aspect. The inves-
tigation is guided by a theorem that appears as an exercise in [4], page 200;
a proof can be found in [1], Theorem 6.1.

The locus of a point P in the plane of triangle ABC (with side lines
omitted) such that the Euler lines of the four triangles ABC, PBC, APC,
and ABP concur is the union of the Neuberg cubic of AABC and its
circumcircle.

The theorem does not, of course, give any guidance as to the location of the
point of concurrence with respect to the given point P, but it does provide a
good starting point for a computer investigation, assisted by the established
data in ETC. Some numbered assertions follow. There is good computer
evidence for them all, but I have verified only those found in the table in
(3) below.

Notation. The Parry reflection point, X399, lies on the Neuberg cubic (an
established fact). A secant through this point, but not tangent to the cubic,
will cut the cubic at two further points Z and Z’, and the Euler line of AABC
at T, say. Let O be the circumcentre of AABC and S the mid-point of OT'.
Then we have

(1) Conjecture: The Euler lines of the triangles ABC, ZBC, AZC, ABZ,
Z'BC, AZ'C, and ABZ’ concur at S.

We refer to Z and Z’ as Schiffler conjugates; each position P = Z or
P = Z’ determines Euler lines that concur at the same point S.

(2) Conjecture: Every pair of Schiffler conjugates lies on a line through X3g9.

Note that conjectures (1) and (2) combine to assert that, in general,
each concurrence point S comes from precisely two positions of P on the
Neuberg cubic. (Of course, if P is any point different from a vertex on the
circumcircle of AABC then the four resulting Euler lines all pass through
the circumcentre.)

We now list some examples where Schiffler conjugates are found among
centres that have been indexed in ETC (and therefore have a ready basis of
attestation). Each entry amounts to an individual assertion. See Figure 2.
Again we denote the isogonal conjugate of X by X ;,1.

(3) Examples of Schiffler conjugates:

We refer to a point X g in the table below. Its trilinear coordinates are
a: 3 :~ where

2U, 2U,
a = —————— —U;cosA, 3 = ———— —Ujcos B,
cos B 4 cosC cosC + cos A
2U,
and ¥y = ————— —U;cosC,

cos A 4+ cos B
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with
a b c
U, = +
cosB+cosC  cosC+cosA cosA+cosB
and U; = acosA-+bcosB+ccosC .
S = Concurrence | T = intersection
Z z' point on Euler | of ZZ’ with Euler
line of AABC line of AABC
X, (incentre) | Xgzoes = X, gy | X21 (Schiffler pt) Xr
X3 (1Ist X14 (2nd X (centroid) X3g1 (mid-point
Fermat pt) Fermat pt) of X, and X},)

X4 X1263 X5 (9-pt centre) | X4 (orthocentre)
(orthocentre)

X3 X74 = X530 X3 X3
(circumcentre) (circumcentre) (circumcentre)
X138 = X309 X350 (Euler X350 (Euler X350 (Euler

infinity pt) infinity pt) infinity pt)
X337 (1st X S; (Not X5 reflected
Wernau pt) indexed in ETC) in Sy
X133s (2nd Xk S, (Not X5 reflected
Wernau pt) indexed in ETC) in Sy

Let H be the orthocentre of AABC. Then, with reference to claim
(2) above, we now have seven notable points (A, B, C, H, Z, Z’, and S).
Taking three points at a time (as vertices) we can, in general, form 35 distinct
triangles. Each of these has a nine-point circle, four of which will be identical
(for ABC, HBC, AHC, and ABH). This leaves up to 32 distinct circles in
the plane of ABC, which I will refer to as a Schiffler Set.

(4) Conjecture: All circles of a Schiffler Set concur at a fixed point.

(5) Some examples (again, individual assertions):

1. For the Schiffler Set (A, B, C, H, X1, X3065, X21), the point of concur-
rence is Xq1.

2. For the Schiffler Set (A, B,C, H, X3, X14, X3), the point of concur-
rence is Xq15.

3. For the Schiffler Set (A, B,C, H, X1263, X4, X5), the point of concur-
rence is X37. (Note that X, = H.)

4. For the Schiffler Set (A, B,C, H, X3, X74, X3), the point of concur-
rence is X25.
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We have observed that in each case all seven points lie on a conic, the
centre of which, call it X<, happens to be the point of concurrence of the
Schiffler Set that they define. For example, the conic through A, B, C, H,
X1, X3065, and X, is the Feuerbach hyperbola with centre X = X;. This
suggests a more comprehensive theorem:

(6) Conjecture: If point Z lies on the Neuberg cubic of ABC, then the hy-
perbola through A, B, C, H, and Z also passes through Z’, on the Neuberg
cubic, and S, the point of concurrence of the Euler lines of triangles ABC,
ZBC,AZC,ABZ,Z'BC, AZ'C, and ABZ'. The centre of the hyperbola,
X, is the point of concurrence of the Schiffler set.

Remark. Bernard Gibert, in his study of the Neuberg cubic [2] mentions the
isogonal conjugates X4 5 = E558 and X5;» = E559, but not in the above
context.

Finally, there are elementary proofs for some of the entries in the table
in (3). Here is a proof that P = X;3 and P = X4 both determine Euler
lines that intersect in the centroid.

B

Figure 3: F = X3 determines the Euler lines that meet at the centroid G
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The first Fermat point F = X3 is the intersection of the lines joining
the vertices of AABC to the remote vertices A;, By, and C; of equilateral
triangles erected externally on the opposite sides (see Figure 3). The cen-
troids B, of AAB,C, Gg of AFAC, and G of ABAC are each one third
of the way from the mid-point of AC to the opposite vertices, which implies
that B,Gp and B,G are parallel to B, B (which contains F by definition).
That is, G lies on B,G. But B, is the circumcentre of A AFC; thus, B,G
is the Euler line of AAFC. Similarly, CoG and A5G are the Euler lines of
triangles ABF and BCF'. Therefore, point F effects the concurrence of the
Euler lines at the centroid of AABC.

The same argument shows that the second Fermat point X4, con-
structed using equilateral triangles erected internally on the sides of AABC,
likewise determines Euler lines that meet at G.

The proof that P = X3 and P = X4 both determine Euler lines that
intersect in the circumcentre X3 is left to the reader. It is less complicated
than the above proof.
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On the Pell Equation z? — (k? — 2)y? = 2!

Ahmet Tekcan

1 Introduction.

Let d # 1 be a positive non-square integer and N be any fixed positive
integer. Then the equation

x? —dy®> = £N 1.1)

is known as “Pell’s equation” after John Pell (1611-1685), who searched for
integer solutions to equations of this type. Ironically, Pell was not the first
to work on this problem, nor did he contribute to our knowledge for solving
it. Euler (1707-1783), who brought us the ¢-function, named the equation
after Pell, and the name stuck.

For N = 1, the Pell equation

x? —dy® = +1 1.2)

is known as the classical Pell equation. Its complete theory was worked out
by Lagrange (1736-1813), not Pell. It is often said that Euler mistakenly
attributed Brouncker’s (1620-1684) work on this equation to Pell. However,
the equation appears in a book by Rahn (1622-1676), which was certainly
written with Pell’s help. Perhaps Euler knew what he was doing in naming
the equation. Further details can be found in [2], [6], and [7].

In this article, we will define by recurrence an infinite sequence of
positive solutions of the Pell equation 2% — dy? = 2!, where d = k2% — 2
with k > 2 an integer and ¢ > 0 is also an integer. We will also express these
solutions using matrices that depend only on k£ and ¢.

2 Preliminary facts.

The Pell equation in (1.2) has infinitely many integer solutions. The
first non-trivial positive integer solution (z;, y;) (first in the sense that x; or
x1 + y1v/d is minimal) is called the fundamental solution, because it gener-
ates all the other solutions. In fact, if (x1,y1) is the fundamental solution of
x?2 — dy? = 1, then the n'? positive solution (x,, y,) is defined by

Ty +ynVd = (z1+y1Vd)" 2.1)

Copyright © 2007 Canadian Mathematical Society



362

for any integer n > 2. (Furthermore, all non-trivial solutions can be
obtained by considering the four cases (+z,,, +y,) forn > 1.)

There are several methods for finding the fundamental solution of Pell’s
equation 2 — dy? = 1 for a positive non-square integer d. For example,
the cyclic method known in India in the 12t" century, and the slightly less
efficient but more regular English method (17" century) produce all solutions
of x2—dy? = 1 (see [3, pp. 30, 32]). But the most efficient method for finding
the fundamental solution is based on the simple finite continued fraction
expansion of v/d. We can describe it as follows (see [1] and [4, p. 154]).

Let [ao; a1,...,ar, 2aq | be the simple continued fraction expansion of

Vd (ap = L\/EJ) Let po = ao, p1 =1+ aga1, qo =1, g1 = a1, and
Pn = anPn-—-1 + Pn—2, for n > 2
dqn = QnpQn-1+ qn_2, B

If r is odd, the fundamental solution is (x1,y1) = (p+,q.), Where p, /g,
is the 7t convergent of v/d; if r is even, the fundamental solution is
(w17y1) = (P2r+1, qu+1)-

In connection with (1.1), it is well known ([ 6, Theorem 8.8, p. 146]) that
if (u1,vy) is a solution of (1.1) and (x1,y1) is a solution of z% — dy? = 1,
then (u,v) is a solution of (1.1), where

u+dv = (x1 +dy1)(us + dvy) . 2.2)

However, in general ([6, p. 146, example below Theorem 8.8]), for
N # 1 there is no a fundamental solution of 22 — dy? = +N (that is, a
positive solution (u;,v;) such that for any positive solution (u, v), we have
(uyv) = (un,v,) for some n € IN). A general procedure to obtain the
positive solutions of a solvable Pell equation 2 — dy? = N (for N > 1) can
be found in [6, pp. 147-148, Theorem 8.9].

3 The Pell equation x? — (k? — 2)y? = 2%,

First we consider the case t = 0; that is, the classical equation
x? — (k2 —2)y? = 1.

Theorem 1 Let d = k? — 2 with & > 2.
(a) The continued fraction expansion of v/d is given by

Vi — {[1;5] if k=2, 3.1)

[k —1;1,k —2,1,2k — 2| otherwise.

(b) The fundamental solution of % — dy? = 1 is

(1,y1) = (K* — 1L,k). (3.2)
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Proof: (a) The case k£ = 2 can be easily verified. Suppose that k¥ > 3. Then
(3.1) follows, because

1
k2—2 = k—1+(Vk2—-2—-(k—1)) = k—-1+— 35—
VEk2—2—(k—1)
= k—-1+ ! k—1+ !
= k— . - kb _ .
1+@ 1+k—2+i
2 VRZ—2—(k—2)
1
= k—1+ .
Ll v — —
RV EICE)
= k—1+ !
- - 1
Ut
YT
1
= k—1+ .
1+k:—2+1 1

2k—2+(\/k21—2—(k—1))

(b) The case k = 2 of (3.2) follows because (x,y) = (3,2) is clearly
a minimum solution. On the other hand, using the method from part (a)
above, fork > 3wehaver =3, ap=k—1, a1 =1,a2 =k —2,a3 = 1.
Hence,po = k—1,p1 =k, p2 =k* —k—1,ps =k*—1,q. =1,q2 = k—1,
and g3 = k. Thus, (z1,v1) = (ps,q3) = (k* — 1,k). [

Next we consider the general case.

Theorem 2 Let k, t, d be arbitrary integers with & > 2, ¢ > 0, and
d = k2 — 2. Define a sequence {(u,,v,)} of positive integers by

t-1)/2f 9(t—1)/2)  if ¢
(u1,v1) = (2 k.2 ) %f bis odd, 3.3)
(2t/2(k% — 1),2!/2k) if tis even.
and, for n > 2,
(’U,n, vn) = (’u,l.’ljn_l —+ dvlyn—la V1iTn—1 + ulyn—l) , (34)

where {(x,,y,)} is the sequence of positive solutions of 2 —dy? = 1. Then
(@) (wn,vn) is a solution of 2 — dy? = 2! for any integer n > 1.

(b) For n > 1, we have

{un_H = (k% — Dun, + (k2 — 2k)v,, 3.5)

Vpt1 = ku, + (K2 — 1)v, .
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(¢) Forn > 1, we have

n—1
2 3 _
o(t—1)/2 (k’ . 1 kkz 21"’> <’;> if ¢ is odd,
<“"> — . (3.6)
2 3 _
2t/2 k 1k 2k 1 if ¢ is even.
k k2 —1 0

Proof: (a) Assume t is odd. We have that (u;,v) = (2¢-1/2k, 20¢-1)/2) jg
a solution of 2 — dy? = 2¢, because

u?—dv? = (2071/2k)% _ (12 — 2)(20¢-1/2)?
2t—1k2 _ 2t—1k2 + 2. 2t—1 — 2t .

Similarly it can be shown that (uy,v:) = (2¥/2(k? — 1), 2¢/2k) is a solution
when t is even.
On the other hand, rewriting (3.4) as

Uy + vn\/a = (mn—l + yn—l\/a) ('U'l + 'Ul\/g) ) (37)

we see from (2.2) that (u,,v,) is also a solution for each n > 2. This can
also be proved directly as follows:

uZ —dv: = (wiTp-1 + dviyn—1)® — d(V1Tn_1 + U1Yn—1)>

2/ 2 2 2/ 2 2
= U (mn—l —dy, ;) —dvi(z,_, — dyn—l)

= (2h_1 —dyp ) (ui —dv}) = 2°.
(b) Using repeatedly (2.1) and (3.7), we obtain
(Tn + yn Vd) (ur + v1Vd)
(z1 +31Vd)" (ur + v1Vd)
= (21 +1Vd) [(21 +3:1VD)" " (ur + 0.1Vd)]
(w1 +91V) | (@nr + gna V) (w1 + 01V
(@1 + yl\/g) (un + ’Un\/a) )

which is equivalent to (3.5).

. . un-l—l _ T dyl Un
(c) We can rewrite (3.5) in the form (vn+1) = (y1 o1 ) (vn) . Hence,

Upt1 + ’Un+1\/3

proceeding by induction on n > 1, we obtain

()= Gy )
VUn N Y Ia (%1 ’

Now (3.6) follows from (3.3), because

(e =66 .
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Example 3.1 Let k = 4. Then the fundamental solution of ? — 14y? = 1 is
(z1,y1) = (15,4), and some other solutions are
(x2,y2) = (449,120), (x3,y3) = (13455,3596),
(4,y4) = (403201,107760), (xs5,ys5) = (12082575,3229204),
and  (we,ys) = (362074049, 96768360) .
Let t = 6. A solution of ? — 14y? = 64 is given by (u1,v;) = (120, 32).
Hence, using (3.5), we get
(uz,v2) = (3592,960), (us,vs) = (107640, 28768),
(ug,v4) = (3225608,862080), (us,vs) = (96660600,25833632),
(ug,v6) = (2896592392, 774146880) .

Problem. Prove or disprove that (u;,v1) is a fundamental solution of
x? — (k* —2)y? = 2¢ (fort>1).
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PROBLEMS

Toutes solutions aux problémes dans ce numéro doivent nous parvenir au plus
tard le 1er avril 2008. Une étoile (x) aprés le numéro indique que le probléme a été
soumis sans solution.

Chaque probléme sera publié dans les deux langues officielles du Canada
(anglais et francais). Dans les numéros 1, 3, 5 et 7, I’anglais précédera le francais,
et dans les numéros 2, 4, 6 et 8, le francais précédera I’anglais. Dans la section des
solutions, le probléme sera publié dans la langue de la principale solution présentée.

La rédaction souhaite remercier Jean-Marc Terrier, de I’Université de
Montréal, d’avoir traduit les problémes.

—_—_— NN S O ————

3263. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

Les nombres de Fibonacci F,, et les nombres de Lucas L,, sont définis
par les récurrences suivantes :

Fp =0, F, =1, et F,y; = F,+F,_, pourn >1;

Ly =2, Ly =1, e L,y = L,+L,_; pourn > 1.

Soit n un entier positif. Montrer que

N|=

n 2 n L2
L,Ln,yy < 2+ <Z Lk-,FZk) . Z \/Fk,—
k=1 k

k=1

3264. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit M le point milieu de BC dans le triangle ABC et supposons
que la bissectrice intérieure de I’angle BAC coupe BC en N. Montrer que
/BAC = 90° + /M AN si et seulement si b/c = 1 — 2 cos A.

3265. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit ABC D un trapéze de cotés paralléeles AB et CD avec AD = CD
et AC = BC, AC et BD se coupant en E. Soit respectivement x, y et z les
mesures des angles ABC, BDC et AED. Montrer que y < 30°,

2tanx 2sinx + sin 3z
tany = —5—, et tanz = .
3 4+ tan“ x 2cosx + cos 3x

3266. Proposé par Michel Bataille, Rouen, France.

Trouver tous les entiers positifs n ayant la propriété suivante : chaque
fois que a et b sont des entiers tels que ab + 1 est un multiple de n, il en est
de méme pour a + b.
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3267. Proposé par Michel Bataille, Rouen, France.

Dans un triangle non équilatéral ABC soit I le centre du cercle inscrit
et O celui du cercle circonscrit. Désignons respectivement par X, Y et Z
les points milieux de BC, C A et AB. Si «(P) représente la projection d'un
point P sur la droite OI, et si opn(P) représente la réflexion du point P
par rapport a la droite M N, montrer que

O'YZoTI'(A) = O'ZXoTI'(B) = O'XYoTl'(C)

3268. Proposé par Bill Sands et John Wiest, Université de Calgary, Calgary,
AB.

Supposons donné une suite infini de cartes Cy, Cs, .. .. Sur chaque carte
est inscrite une série infinie de nombres réels non négatifs dont la somme
vaut 1.

(a) Montrer qu’il existe un réarrangement D;, D-, ..., des cartes tel que

oo N
la série > d;; converge, ol d;; est le ™€ nombre de la carte D,;.
=1

oo
(b)* Est-ce qu’il existe un réarrangement tel que > d;; < 1?
=1

[ Ed : Comparer avec le probléme 2620 [2002 : 127; 2005 : 319-326].]
3269. Proposé par Pantelimon George Popescu, Bucarest, Roumanie et

José Luis Diaz-Barrero, Université Polytechnique de Catalogne, Barcelone,
Espagne.

Soit n un entier positif. Montrer que
2n ™ k 1
() E oty 2 (1)
n+1 k::lexp<k> 2

3270. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit P un point quelconque a égale distance de deux droites k et £. Soit
A et B les projections orthogonales respectives de P sur k et £. Montrer que
pour tout M € k et N € £, les énoncés suivants sont équivalents :

() PN L BM;
(i) PM 1L AN ;
(iii) MN2? = AM? + BNZ2.

3271. Proposé par Virgil Nicula, Bucarest, Roumanie.

Soit a, b et ¢ nombres réels. Montrer que |a+b|+ |b+c|+ |c+a| < 2
si et seulementsi|a| <1, |b| <1,|c|]<1l,etla+b+cl <1.
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3272. Proposé par D.E. Prithwijit, University College Cork, République
d’Irlande.

Trouver tous les nombres naturels a et b tels que a | (b + 1) et
b| (a®+1).
3273. Proposé par Virgil Nicula, Bucarest, Roumanie.

Sur les cotés du triangle ABC on dessine des triangles isocéles BMC,
CNA et APB avec MB = MC, NC = NA et PA = PB. Si
/BMC + /CNA + ZAPB = 360°, montrer que les angles du triangle
M N P sont indépendants du triangle ABC.

3274, Proposé par Vasile Cirtoaje, Université de Ploiesti, Roumanie.
Soit a, b et c trois nombres réels non négatifs. Montrer que

a’ n b3 " c3 > a+b+ec
2a2? 4+ b2 2b2 +c2  2c24 a2 — 3 ’

3275. Proposé par Vasile Cirtoaje, Université de Ploiesti, Roumanie.

Soit z, y et z trois nombres réels non négatifs satisfaisant x+y+2z = 3,
et soit 0 < r < 8. Montrer que

3263. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

The Fibonacci numbers F,, and Lucas numbers L,, are defined by the
following recurrences:

Fob =0, F, =1, and F,yqy = F,+ F,—; forn>1,;
Lo =2, L =1, and Ln+1 = L,+ L,_1 fOI'TLZ 1.

Prove that for each positive integer n,

1
n 2 n L2
L,Lnpyy < 2+ <Z Lk-,FZk) . Z \/Fk,—
k=1 k

k=1

3264. Proposed by Virgil Nicula, Bucharest, Romania.

Let M be the mid-point of BC in AABC, and let the interior angle
bisector of Z/BAC meet BC at IN. Prove that /ZBAC = 90° + /M AN if
and only if b/c =1 — 2 cos A.
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3265. Proposed by Virgil Nicula, Bucharest, Romania.

Let ABCD be a trapezoid with AB || CD for which AD = CD and
AC = BC, and let E be the intersection of AC and BD. Let z, y, 2
denote the measures of angles ABC, BDC, AED, respectively. Show that
y < 30°,

2tanx 2sinx + sin 3z
> and tanz =
3+ tan“x

tany = .
2cosx + cos 3x
3266. Proposed by Michel Bataille, Rouen, France.

Find all positive integers nn with the following property: whenever a
and b are integers such that ab + 1 is a multiple of n, then a + b is also a
multiple of n.

3267. Proposed by Michel Bataille, Rouen, France.

Let ABC bhe a non-equilateral triangle with circumcentre O and
incentre I. Let X, Y, Z be the mid-points of BC, CA, AB, respectively. If
7 (P) represents the projection of a point P onto the line OI, and opn(P)
represents the reflection of the point P in the line M N, prove that

O'YZoTI'(A) = O'ZXoTI'(B) = O'XYoTl'(C)

3268. Proposed by Bill Sands and John Wiest, University of Calgary,
Calgary, AB.

You are given an infinite sequence of cards Cy, Cs, ..., on each of which
is written an infinite series of non-negative real numbers which sums to 1.
(a) Prove that there is a reordering D,, D5, ... of the cards such that
oo
the series > d;; converges, where d;; is the it term of the series on

=1

card D;.

(b)* Is there necessarily a reordering such that " d;; < 1?
i=1
[ Ed: Compare with problem 2620 [2002 : 127; 2005 : 319-326]. ]
3269. Proposed by Pantelimon George Popescu, Bucharest, Romania

and José Luis Diaz-Barrero, Universitat Politécnica de Catalunya, Barcelona,
Spain.

Let n be a positive integer. Prove that

2n i k n—l—l)
> .
exp <n+1)kz::16Xp (Z’) - < 2
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3270. Proposed by Virgil Nicula, Bucharest, Romania.

Let k£ and £ be two straight lines, and let P be any point equidistant
from them. Let A and B be the orthogonal projections of P onto k and ¢,
respectively. Prove that, forany M € kand N € ¢, the following statements
are equivalent:

() PN L BM;
(i) PM L AN;
(i) MN? = AM? + BN?2.

3271. Proposed by Virgil Nicula, Bucharest, Romania.

Let a, b, and c be real numbers. Prove that |a+b|+|b+c|+|c+a| < 2
ifand onlyif [a] <1, |b] <1,|c|<1,and |a+b+¢c| < 1.
3272. Pproposed by D.E. Prithwijit, University College Cork, Republic of
Ireland.

Characterize all natural numbers a and b such that a | (b2 4+ 1) and
b| (a®+1).
3273. Proposed by Virgil Nicula, Bucharest, Romania.

On the sides of triangle ABC are mounted isosceles triangles BM C,
CNA, and APB with MB = MC, NC = NA, and PA = PB. If
/BMC + /CNA + ZAPB = 360°, prove that the angles of AMNP
are independent of AABC.

3274. Proposed by Vasile Cirtoaje, University of Ploiesti, Romania.

Let a, b, and ¢ be non-negative real numbers. Prove that

a’ n b3 n c3 S a+b+c
2a2? 4+ b2 2b2 +c2  2c24 a2 — 3 '

3275. Proposed by Vasile Cirtoaje, University of Ploiesti, Romania.

Let x, y, and z be non-negative real numbers satisfying z +y + z = 3,
and let 0 < » < 8. Prove that

1 " 1 n 1 > 3
xy? +r  y24+r zx24+r — 1471

——— | NS
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.

—_—_— N~ S O ————

3164. [2006 : 394, 396] Proposed by Mihaly Bencze, Brasov, Romania.

Let P be any point in the plane of AABC. Let D, E, and F denote
the mid-points of BC, C A, and AB, respectively. If G is the centroid of
ANABC, prove that

0 < 3PG+PA+PB+PC—2(PD+PE+PF) < 1(AB+BC+CA).

Composite of similar solutions by Michel Bataille, Rouen, France; and
Walther Janous, Ursulinengymnasium, Innsbruck, Austria.
The left inequality has already been proven (see the solution of problem
3052 [2006 : 341]).
— — —_—
Asin 3052, weseta = PA, b = PB, and ¢ = PC. With this notation,
the right inequality can be rewritten as

la] + |b] + e[ +]a+Db+c[—[b+c| —[c+al—[at+D]
< 3(b—al+fc—b|+]a—c|),

or

|2a| + |2b| 4+ |2¢| 4+ |2(a + b + ¢)|
< Ib—al+lc—b|+la—c|+2(b+c| +|c+a| + |a+b]).

Now, the Triangle Inequality gives us

|2a] = |(a+b)—(b—2a)] < [a+b|+[b—al,

|2b] = [(b+c)—(c—Db)] < |b+c|+[c—Db],

2¢] = |(c+a)—(a—c)| < [ct+al+]a—c],
|2(a+b+c)] = [(a+b)+(b+c)+ (c+a)

< la+bl+[b+cl+lc+al.

The result follows by adding the last four inequalities.

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; and
the proposer.

Y WS W Y o
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3165. [2006 : 394, 397] Proposed by Mihaly Bencze, Brasov, Romania.

For any positive integer n, prove that there exists a polynomial P(x),
of degree at least 8n, such that

(2n+1)*

Y. 1P| < |P(0)].

k=1

Essentially the same solution by Roy Barbara, Lebanese University, Fanar,
Lebanon; Michel Bataille, Rouen, France; Richard 1. Hess, Rancho Palos
Verdes, CA, USA; Walther Janous, Ursulinengymnasium, Innsbruck, Austria;
and John Hawkins and David R. Stone, Georgia Southern University,
Statesboro, GA, USA.

(2n+1)2
Let n be a positive integer. Let P(x) = ][] (x —k). Then P(k) =0
k=1
fork=1,2,..., (2n + 1)2, and therefore,
(2n+1)?

SR = 0 < @n+ 1) = |P(0)].
k=1

The degree of P(z) is (2n+1)% > 8n (note that this inequality is equivalent
to (2n — 1)2 > 0).

Also solved by M.R. MODAK, Pune, India; and the proposer.

The solution by Modak was the same as the one above except that he defined P(x) as
the product of x — k fork = 2 to k = (2n + 1)? instead of k = 1 to k = (2n + 1)2. Thus,
his polynomial P(x) has degree (2n + 1)2 — 1 = 4n(n + 1). The proposer’s solution was
considerably more complicated, involving Chebyshev polynomials.

Nt —

3166. [2004-118] Proposed by Mihaly Bencze and Marian Dinca, Brasov,
Romania.

Let P be an interior point of the triangle ABC. Denote by d,, dy, d.
the distances from P to the sides BC, CA, AB, respectively, and denote
by D4, Dg, Dc the distances from P to the vertices A, B, C, respectively.
Further let P,, Py, and Pc denote the measures of ZBPC, ZCPA, and
/APB, respectively.

Prove that

dady sin (1 (Pa + Pg)) + dydcsin (3(Ps + Pc)) + dedg sin (1 (Pc + Pa))
< i(DBDC sin Py + DcD 4 sin Pg + DaDp sinPc) .

Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.

Let [ XY Z] represent the area of AXY Z. Then the right side of the
given inequality is simply 1[ABC].
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Let the interior angle bisectors of /BPC, Z/CPA, and ZAP B meet the
sides BC, CA, and AB at A’, B’, and C’, respectively. Then PA’ > d,,
PB’ > dy, and PC’ > d.. Thus, the left side of the given inequality is less
than twice the sum of [A’PB’], [B’PC’], and [C’'PA’]; that is, the left side
of the given inequality is less than 2[A’B’C’].

Therefore, it suffices to prove that [A’B’C’] < 3[ABC].

But A’B’C’ is a Cevian triangle of AABC; that is, AA’, BB’, and
CC' are concurrent. This follows since

BA'’ CB’' AC’ PB PC PA

A'C B'A C'B _ PC PA PB

The desired result then follows from the following theorem:

Theorem. Let AA’, BB’, and CC’ be three concurrent Cevians of AABC.
Then [A’B’C’] < 1[ABC].
Proof: Let
AC’ BA’ CB’
= ——, p=——, and v = .
C'B A'C B’A

From Ceva’s Theorem, we have Aurv = 1. Then

P p[ABC]
BACT = G warn

and [AC'B’] =

(CB'A = v[ABC]
A+v)(1+p)’
A[ABC]

A4+NA+v)

Hence,

[A'B'C'] In v A
[ABC] —  (A+wA+X) (Q+0)A+p) Q+NA+v)
o p(A4+r)+ v+ + A0+ p)
1+ A1+ p)(1+v)
_Atptrv+ At pr+uA
T+ +p)A+v)
14+ Apv

L4+ A+ p+ v+ Ap+ pv + VA + Ay

2 . .
TR WYy sy oy R

which is obviously less than or equal to % = i because each of the bracketed
expressions is at least 2. [

Also solved by Walther Janous, Ursulinengymnasium, Innsbruck, Austria; and the
proposer.

Y WS W Y o



374

3167. [2006 : 395, 397] Proposed by Arkady Alt, San Jose, CA, USA.

Let ABC be a non-obtuse triangle with circumradius R. If a, b, c are
the lengths of the sides opposite angles A, B, C, respectively, prove that
abc

3 3 3
A+b B c < —.
a cos -+ bcos + ccos S Ime

Composite of similar solutions by Mohammed Aassila, Strasbourg, France;
and Vedula N. Murty, Dover, PA, USA.

Let S be the area of triangle ABC'. Since

abc 1, .
S = E = ER Z sin 2A ,
a b c

sin A sin B sin C

and Z sindA = —4sin2Asin2Bsin2C,
cyclic

we have

Z acos®A = Z (2Rsin A) cos>A = R Z sin 2A cos®’A
cyclic cyclic cyclic

1
= —-R in2A(1 2A
2 g . sin2A(1 + cos2A)
cyclic

1 1
= ER Z sin2A + ZR Z sin4A
cyclic cyclic
abc

= iR? — Rsin2Asin2Bsin2C' .

Now we note that sin 2A sin 2B sin 2C > 0 because A ABC is non-obtuse.
Thus, we obtain the desired inequality.
Equality holds if and only if the triangle is right-angled.

Also solved by MICHEL BATAILLE, Rouen, France; CAO MINH QUANG, Nguyen Binh
Khiem High School, Vinh Long, Vietnam; CHIP CURTIS, Missouri Southern State University,
Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; JOE
HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
SALEM MALIKIC, student, Sarajevo College, Sarajevo, Bosnia and Herzegovina;, JOEL
SCHLOSBERG, Bayside, NY, USA; PANOS E. TSAOUSSOGLOU, Athens, Greece; PETERY. WOO,
Biola University, La Mirada, CA, USA; and the proposer.

Howard observed that

be
3A ave
Z a cos > 1R2

cyclic
if and only if the triangle is obtuse, a fact that follows easily from the featured solution as well.

Y WSS L W
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3168. [2006 : 395, 397] Proposed by Arkady Alt, San Jose, CA, USA.

n
Let 1, 3, ..., T, be positive real numbers satisfying [[ =; = 1.
=1
Prove that
n

doaf(lta) > o [+
i=1 i=1

Solution by Salem Malikic, student, Sarajevo College, Sarajevo, Bosnia and
Herzegovina.

By the Power-Mean Inequality, we have {/1(a” +17) > 1(a + 1);

this is equivalent to a™ + 1 > =T (a +1)™. Using this result as well as the
AM-GM Inequality and the given condition z x5 - - - z,, = 1, we obtain

SNoar(4w) = ap+-tal a4 ant?
=1

> w;’-l—-ﬂ-l-wz+NV($13’32°"3’3n)"+1
oy ot aptn = (@ + 1)+ (20 + 1)

Z 2”—1 ((w1+1)n—+—-..+(wn+1)n)
> 27:7’_1 V(iﬂl + 1)71(:1;2 + ]_)n v (‘Bn + 1)n
n n
- on—1 H(l + ;) .
=1
Equality holds if and only if 1 = 22 = -+ - = x,,.

Also solved by MOHAMMED AASSILA, Strasbourg, France; MICHEL BATAILLE, Rouen,
France; CAO MINH QUANG, Nguyen Binh Khiem High School, Vinh Long, Vietnam; JOE
HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
JOEL SCHLOSBERG, Bayside, NY, USA; PANOS E. TSAOUSSOGLOU, Athens, Greece; PETER
Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Cao Minh remarked that the case n = 3 is problem 11 (Russia) of IMO Short List 1998.

B o WV S8 W G o
3169. [2006 : 395, 397] Proposed by Vesselin Dimitrov, National High-
school of Mathematics and Science, Sofia, Bulgaria.

Let A be a finite set of real numbers such that each a € A is uniquely
expressible asa = b+ ¢, where b, c € Aand b < c.

(a) Prove that there exist distinct elements a4, as, ..., ar € A such that
a1 +az+---+ap=0.

(b)*x Does this necessarily hold if it is no longer assumed that each
representation a = b + c is unique?
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No correct solutions were received for either part (a) or (b), so this
problem remains open.

The proposer remarked that there are many finite sets A C Z for which
the given condition holds. He claims, for example, that for each n € NN, the
set { —2ntl 42k 41 2k | k=0, 1,2, ..., n} satisfies the requirement.
[Ed.: Note that

2k — k-1 ok=1  jfp>1,
2° =1 = (-2t 42" 41) +27,
—2nttyok 41 = (—2nttpokt )42kt ifk >,
—2rtl 42041 = —ontl o = g(—2ntlpon ).

It is not difficult to verify that each of these representations is unique.]

NN —

3170. [2006 : 395, 398] Proposed by Mihaly Bencze, Brasov, Romania.
Let a and b be real numbers satisfying 0 < a < % < b < 1. Prove that

(@) 2(b— a) < cosma — cos 7b;

(b) (1 — 2a)coswb < (1 — 2b) cos a.

Solution by Michel Bataille, Rouen, France.

(a) Let f(x) = 2z + coswx. The proposed inequality can then be
expressed as f(b) < f(a).

We have f/(z) = 2 — wsinwz and f”(x) = —n? cos mx. Hence, f’ is
decreasing on [0, 1] and increasing on [, 1]. Since f/(0) = f/(1) = 2 and
f'(3) =2 —m <0, there exist o and B with 0 < o < < 8 < 1, such that
f'(a) = f'(B) = 0and f'(x) < 0if and only if x € (a, 3).

Thus, f isincreasing on [0, o] and [3, 1], and decreasing on [«, 3]. Since
f(0) = f(%) = f(1) = 1, we see that f(z) > 1forz € [0, 1] and f(z) <1
for z € [%,1]. In particular, f(b) < 1 < f(a), and the result follows.

(b) (Modified slightly by the editor). The proposed inequality is false;

for example, if a = i and b = 1, then the inequality would imply that

-1< —g, which is absurd.

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; CHIP CURTIS,
Missouri Southern State University, Joplin, MO, USA; APOSTOLIS K. DEMIS, Varvakeio High
School, Athens, Greece; RICHARD I. HESS, Rancho Palos Verdes, CA, USA; Walther Janous,
Ursulinengymnasium, Innsbruck, Austria; VEDULA N. MURTY, Dover, PA, USA; JOHN
HAWKINS and DAVID R. STONE, Georgia Southern University, Statesboro, GA, USA; PETER
Y. WOO, Biola University, La Mirada, CA, USA; and the proposer (part (a) only).

All the solvers noticed that the inequality in (b) is incorrect. Curtis commented that the
inequality does hold sometimes (for example, whena = 0 and b = %); thus, one cannot simply
reverse it.
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3171. [2006 : 395, 398] Proposed by Paul Yiu, Florida Atlantic University,
Boca Raton, FL, USA.

Given a point P in the first quadrant, it is known that the line segment
in the first quadrant joining the coordinate axes, passing through P, and
having minimum length (Philo’s line) is not constructible using straightedge
and compass. However, the line which (together with the two axes) defines a
triangle in the first quadrant with minimum perimeter is constructible. Give
such a construction.

1. Solution by Claudio Arconcher, Jundiai, Brazil.

v
BI
B
P
r
o) A’ \U A .

Claim. The hypotenuse of the triangle of minimum perimeter is the tangent
at P to the circle through P, call it T, that is tangent to the positive x- and
y-axes and separated by that tangent from the origin O.

Proof: Let the line through P tangent to I meet the z-axis at A and the
y-axis at B. Let £ be any other line through P intersecting the positive axes
at points U and V, say. Then the line parallel to UV and tangent to T’
intersects the axes at A’ and B’ with OA’ < OU and OB’ < OV. Since
OA + OB + AB = OA’ + OB’ + A’B’, which equals twice the length of
the tangents to T from O, we have

OA+ OB+ AB = OA'+0OB'+ A’'B’ < OU+0V +UV,

as claimed. n
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Construction. First construct an arbitrary circle IV that is tangent to the
positive - and y-axes (whose centre C’ is an arbitrary point of the line
y = x), and call P’ the point closest to O where OP intersects IT’. Define
C to be the point where the line parallel to P’C’ through P intersects OC".
Then C is the centre of I" (because the dilatation with centre O that takes C’
to C will take P’ to P, and take I'V and its points of tangency with the axes
to I and its tangency points on the axes).

I1. Composite of similar solutions by Peter Y. Woo, Biola University, La
Mirada, CA, USA; and the proposer.

Analysis. Let the axes meet at O, and let the line segment through P(a,b)
meet the z-axis at A and the y-axis at B. Define 8 = ZBAQO. Without loss
of generality assume that a > b. Then the perimeter of triangle OAB is

p(0) = a(l+secH + tanB) + b(1 + csc O + cot 0) .

Its derivative satisfies

, a b
0) = - .
P'(6) 1—sin@ 1 —cosé@
The geometry indicates that the minimum perimeter occurs when the
derivative is zero, which means a cos@ — bsin0 = a — b, or

acosf — bsin 0 _ a—2>b
JZr2 Vet
. a . b
equation can be interpreted as
0) — a—b>b
cos(¢ +0) = T
A
B
Q
Y (0,b) M| [[6\P(a,b)
9
b
¢ a 0
o X (a,0) A
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Construction. Construct the circle with diameter O P, cutting the y-axis again
at Y (0,b). Construct the circle with centre Y and radius Y O, cutting the
segment Y P at M. Draw the circle with centre P and radius P M, cutting the
first circle at Q (between P and B). Then PQ is the desired line that hits the
axes at A and B and determines the triangle O AB of minimum perimeter.
. —-b

Since PQ = a — b and PQ L OQ, we get cos /QPO = —2—2__
(Since PQ QL 0Q, weg QPO = 22
the line PQ makes an angle of 6 with the z-axis such that 8 + ¢ = ZOPQ.)

Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; MICHEL

BATAILLE, Rouen, France; and CHIP CURTIS, Missouri Southern State University, Joplin, MO,
USA.

: whence,

B SN D W

3172. [2006 : 396, 398] Proposed by Vincentiu Ridulescu, University of
Craiova, Craiova, Romania.

Let f be a positive continuous function defined on (0, c0) such that
liminf f(x) > 0. Prove that there is no positive, twice differentiable
Tr—00

function g defined on [0, co) which satisfies g”” + f o g = 0.

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO,
USA, modified by the editor.

Suppose that such a function g exists. Then f o g is continuous, and
therefore g’” is also continuous. Since f is positive on (0, co), the function
g’ is negative on (0, o0), and ¢’ is decreasing.

Now suppose that g’(a) = —k < 0 for some o > 0. Then g’(z) < —k
for all z > a. Therefore, g(x) < g(a) — k(z — ) for all z > «, implying
that g is eventually negative, a contradiction. Hence, g’(x) > 0 on [0, co)
and g is increasing.

Since g is positive and increasing, mli’ngo g(x) = oco or mli_)II;Q glx) =M
for some positive real number M. If Jim. g(x) = oo, then

liminf f(g(x)) = liminf f(y) > 0.
r— 00 y— oo
If lim g(x) = M, then, using the continuity of f, we have
1imﬂ_l>iol.}ff(g($)) = yliglw fly) = f(M) > 0.

Thus, in both cases, lim inf f(g(x)) > 0.
€Tr—r o0

Now, since g’ = —f o g, we have
limsup g’ (z) = —liminf f(g(z)) < 0.

Therefore, there exist § > 0 and 3 > 0 such that g”’(z) < —d forall z > 3.
Then ¢'(z) < ¢’(B) — d(x — B) for all z > 3, implying that g’ is eventually
negative, a contradiction.

Hence, such a function g does not exist.
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Also solved by APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; KEE-WAI
LAU, Hong Kong, China; JOHN HAWKINS and DAVID R. STONE, Georgia Southern University,
Stateshoro, GA, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer

WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria, commented that this
problem is Aufgabe 1224 of the Swiss journal Elemente der Matematik, and that a solution
can be found in the “Aufgaben” section of issue No. 4 of Vol. 61 (2006).

B e WSS D W

3173. [2006 : 396, 398] Proposed by Juan-Bosco Romero Marquez,
Universidad de Valladolid, Valladolid, Spain.

Let OAB be a right triangle with right angle at O. Let OO’ be the
bisector of angle O, with O’ on AB. Let D and FE be the feet of the perpen-
diculars from O’ to the legs OA and OB, respectively. Let FF = OO’ N DE,
G=AENO'D,and H=BDnNO'E.

Prove that AFGH is an isosceles right triangle with right angle at F'.

Composite of similar solutions by Miguel Amengual Covas, Cala Figuera,
Mallorca, Spain; and Bruce Shawyer, Memorial University of Newfoundland,
St. John’s, NL.

B

Since O’ lies on the internal bisector of ZAOB, we have DO’ = O'E,
and therefore, the rectangle ODO’E is a square. Hence, FD = FO’ and
/FDG = /FO'H = 45°. Since ADAG and AOAE are similar, as are
AHO'B and ADAB, we obtain

DG OFE oD O'B O'H

AD =~ A0 ~ A0 = AB  AD
Hence, DG = O’H. It follows that AFDG and AFO’H are congruent.
Thus, FG = FH and /DFG = Z0O’FH, which implies that Z/GFH = 90°
(because Z/DFO’ = 90°). Consequently, AFGH is isosceles with a right
angle at F.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; MICHEL BATAILLE, Rouen, France; FRANCISCO BELLOT ROSADO, 1.B. Emilio
Ferrari, Valladolid, Spain;, CHIP CURTIS, Missouri Southern State University, Joplin, MO,
USA; APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; RICHARD 1. HESS,
Rancho Palos Verdes, CA, USA; JOHN G. HEUVER, Grande Prairie, AB; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; GEOFFREY A. KANDALL, Hamden, CT, USA;
VACLAV KONECNY, Big Rapids, MI, USA; SALEM MALIKIC, student, Sarajevo College,
Sarajevo, Bosnia and Herzegovina; DAVID E. MANES, SUNY at Oneonta, Oneonta, NY, USA;
JOEL SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola University, La Mirada, CA, USA;
TITU ZVONARU, Comanesti, Romania; and the proposer.
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3174. [2006 : 396, 398] Proposed by Juan-Bosco Romero Marquez,
Universidad de Valladolid, Valladolid, Spain.

Given AABC, we define A’ to be the point where the internal angle
bisector of angle A meets the side BC. Let B’ and C’ be the feet of the
perpendiculars from A’ to the sides AC and AB, respectively. Prove that
BB’ and CC’ intersect on the altitude from A.

Composite of similar solutions by Miguel Amengual Covas, Cala Figuera,
Mallorca, Spain; and Salem Malikié, student, Sarajevo College, Sarajevo,
Bosnia and Herzegovina.

We will use directed distances in Ceva’s Theorem to avoid any need
for special cases. From the congruent right triangles AC’A’ and AB’ A’, we
deduce that AC’ = AB’; that is,

AC"

B’A
Let D be the foot of the altitude from A. From the similar right triangles
C’'BA’ and DBA, we have

BD AB
C'B ~ BA'
and from the similar right triangles A’ B’C and ADC, we have
CB’ A'C
DC ~ AC

Multiplying together these three equations, we obtain
AC’ BD CB’ AB A'C

B'’A C'B DC  AC BA’
Since A’ lies on the bisector of angle A, we see that A’ divides the segment

. . BA’ AB
BC in the ratio AB : AC; whence, AC = AC that is,
AB A'C
AC BA’

We conclude that
AC' BD CB’

C'B DC B'A
and the desired result follows from the converse of Ceva’s Theorem. [Almost!
See the remarks following the list of solvers.]

=1,

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; MICHEL BATAILLE, Rouen, France; FRANCISCO BELLOT ROSADO, 1.B. Emilio
Ferrari, Valladolid, Spain; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
APOSTOLIS K. DEMIS, Varvakeio High School, Athens, Greece; JOHN G. HEUVER, Grande
Prairie, AB; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; GEOFFREY A.
KANDALL, Hamden, CT, USA; VACLAV KONECNY, Big Rapids, MI, USA; TAICHI MAEKAWA,
Takatsuki City, Osaka, Japan; MICHAEL PARMENTER, Memorial University of Newfoundland,



382

St. John’s, NL; JOEL SCHLOSBERG, Bayside, NY, USA; PETER Y. WOO, Biola University, La
Mirada, CA, USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

Most solvers used some variant of the featured solution, but only Bataille and Parmenter
noted that the converse of Ceva’s Theorem asserts that the lines AD, BB’, and CC’ are parallel
or concurrent. Here is how Bataille completed the argument: LA’ B’C = 90°; hence, the foot
B’ of the perpendicular from B’ to BC lies between A’ and C; since A’ lies between B and
C, it follows that B’ # B, and the line B’ B is not parallel to AD. Consequently, AD, BB’,
CC'’ must be concurrent.

B WSS L W

3175. [2006 : 396, 398] Proposed by D.]J. Smeenk, Zalthommel, the
Netherlands.

Let AABC be a triangle with /B > 90° and /A < 60°. Let P be a
point on the side AB such that Z/CPB = 60°. Let D be the point on CP
which also lies on the interior angle bisector of ZA. If ZCBD = 30°, prove
that CP is a trisector of angle ACB.

1. Solution by Apostolis K. Demis, Varvakeio High School, Athens, Greece.

Let AY be the bisector of ZCAB, let PM 1 AB with M on AC, let
C N be the bisector of ZAC P, let F be the point on AM with /ZFPA = 60°,
let H be the point of intersection of CN and PM, and let E be the point of
intersection of CIN and AD. Denote the angles of AABC by «, 3, and ~ as
usual.

It is clear that ZFPM = Z/MPC = 30°. From APAC, we obtain
a+ ZACP = 60°; then ZACN = ZNCP = {ZACP = 30° — o From
AAPD, we get 2a + ZADP = 60°; then ZADP = 60° — 1o

In AFPC, the line PM is the bisector of ZFPC and the line CN is
the bisector of ZACP. Thus, H is the incentre of AFPC. Hence, the line
F H isthe bisector of /M FP. From AAPF,weseethat /PFM = «+60°,
so that /MFH = ZHFP = o + 30°.

From AFHC, we obtain

/FHE = (/FCH + /CFH
= (30°—1a)+ (30° + 1a) = 60°.
Thus, in AFHP, we have

/EHP = 180°— /HPF — /HFP — /EHF
= 180° —30° — (2 +30°) — 60° = 60° — 1c.

Therefore, /ZEDP = ZADP = 60° — %a = /EHP, which implies that
quadrilateral EHDP is cyclic. Thus, Z/CHD = Z/EPD = 60°, and hence,
the points F', H, and D are collinear.

Let PM intersect BD at K. If /ZDBC = 30°, then quadrilateral
PBCK is cydlic, since /ZKPC = /KBC = 30°. Thus, /DCB = /PKB
and Z/CKB = /CPB = 60°. From above, we have Z/CH D = 60°; whence,
/CKB = ZCHD. Therefore, quadrilateral K HDC is cyclic, which implies
that /ZHKD = /HCD. 1t follows that /DCB = /HCD = /ACH.
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(o

I1. Solution by Geoffrey A. Kandall, Hamden, CT, USA.

Set = LACD, p = /DCB, and 8 = ZPBD. From APBC, we see
that 3 + ¢ = 90°.
From the trigonometric form of Ceva’s Theorem, we have

sin/BAD sin0 sin30°

. . = 1.
sin /DAC singy sing

Hence,
sin@ = 2sinysin@ = 2sinpcosy = sin2p.

Since the angles 6 and 2¢ are not supplementary (8 < 60° and ¢ < 30°), we
conclude that 8 = 2.

Also solved by MICHEL BATAILLE, Rouen, France; FRANCISCO BELLOT ROSADO,
1.B. Emilio Ferrari, and MARIA ASCENSION LOPEZ CHAMORRO, I.B. Leopoldo Cano,
Valladolid, Spain; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
RICHARD I. HESS, Rancho Palos Verdes, CA, USA; VACLAV KONECNY, Big Rapids, M1, USA;
TAICHI MAEKAWA, Takatsuki City, Osaka, Japan; SALEM MALIKIC, student, Sarajevo College,
Sarajevo, Bosnia and Herzegovina; M.R. MODAK, Pune, India; JOEL SCHLOSBERG, Bayside,
NY, USA; BOB SERKEY, Leonia, N], USA; PETER Y. WOO, Biola University, La Mirada, CA,
USA; TITU ZVONARU, Comanesti, Romania; and the proposer.

B SN D W

3177. [2006 : 462, 464] Proposed by Mihaly Bencze and Marian Dinca,
Brasov, Romania.

Let P be any interior point of triangle A; A A3. Let Ty, T, T5 denote
the projections of P onto the sides A, A3, A3A;, A; As, respectively, and let
H,, H,, H3 denote the orthocentres of triangles A, T5T3, AxT3Ty, AsTi T,
respectively. Prove that the lines H, Ty, H>T>, H3T3 are concurrent.
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A composite of similar solutions by Apostolis K. Demis, Varvakeio High
School, Athens, Greece; and Taichi Maekawa, Takatsuki City, Osaka, Japan.

Because the lines T, H, and PTj3 are both perpendicular to A; A,, they
are parallel. Likewise, T5 H; || PT»; whence H,T5 PT; is a parallelogram. In
the same way, HyT3 PT; is a parallelogram. Consequently, H;T5 is parallel
and equal to its opposite side T3 P, which is parallel and equal to its opposite
side H,T,. It follows that H, H,T, T is a parallelogram, so that

diagonals H, T, and H,T, have a common mid-point.

Similarly, using parallelograms H,T5PT, and H3;T, PT,, we deduce that
H, H3T,T; is a parallelogram; whence

diagonals H,T, and H3T3 have a common mid-point.

Consequently, the segments H,T;, H,T>, and H3T3 have a common mid-
point—the lines they determine are concurrent, as desired.

Also solved by MICHEL BATAILLE, Rouen, France; FRANCISCO BELLOT ROSADO,
1.B. Emilio Ferrari, and MAR IA ASCENSION LOPEZ CHAMORRO, 1.B. Leopoldo Cano, Val-
ladolid, Spain (2 solutions); MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ,
Logroiio, Spain; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; GEOFFREY
A. KANDALL, Hamden, CT, USA; SALEM MALIKIC, student, Sarajevo College, Sarajevo, Bosnia
and Herzegovina;, JOEL SCHLOSBERG, Bayside, NY, USA; D.J. SMEENK, Zaltbommel, the
Netherlands; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

In their second solution Bellot Rosado and Lopez Chamorro determine that, with
A1 A2 A3 as the triangle of reference, if P has trilinear coordinates (p, q, ), then the com-
mon point of H1 Ty, H2T%, and HsT3 has coordinates

(p+rcosB+qgcosC, g+ pcosC + rcos A, r+ gqcos A+ pcos B) .
If instead you let (p, g, ) be the areal coordinates of P, then Bataille shows that the common
point has areal coordinates
1-p1—q1—7),
from which he deduces that the centroid of ATy T>T3 lies two-thirds of the way from P to the
common point.

——— | NS
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